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1 INTRODUCTION 

 

1.1 Overview 

 

Severe and increasing strain has been observed in the power system in recent 

years due to incongruence between the generation and transmission infrastructure. 

Environmental issues, change in energy portfolio and deregulated energy markets are 

some of the prime factors. The kind of stress developed in the system has caused 

concerns for voltage instability. Voltage stability refers to the ability of a power system to 

maintain steady voltages at all buses in the system after being subjected to a disturbance 

from a given initial operating condition [1]. It is very closely related to load dynamics 

[2].There are several studies [3,4,5,6] focused on measures to accurately predict system 

conditions with respect to voltage stability and optimal control actions to avoid collapse 

in the online paradigm. As most of these problems are highly nonlinear and 

computationally intensive, there is a need of research to help in reducing computation and 

using direct measurements for estimation of stability margin.  

Table 1.1 lists some severe voltage instability incidents over the past half century 

[7]. These events cause loss of billions of dollars. Due to such high frequency of voltage 

instability events there is a serious concern for remedial measures. Online voltage 

stability monitoring is an effort towards mitigation of such system wide voltage stability 

events. The tabulation is done in terms of time frame of instability. The events have been 

classified as long term and short term. The generic details of the mechanics of these long 

term and short term events are described in Chapter 2.  
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Table 1.1 Voltage stability incidents  

Date Location Time Frame 

April 13 1986 Winnipeg, Canada Nelson River HVDC link Short term, 1 sec 

Nov. 30 1986 SE Brazil, Paraguay, Itaipu HVDC link Short term, 2 sec 

May 17 1985 South Florida, USA Short term,4 sec 

Dec. 27, 1983 Sweden Long term,55sec 

Dec. 30, 1982 Florida, USA Long term,1-3 min 

Sept. 22,1977 Jacksonville, Florida Long term, few min 

Aug. 4, 1982 Belgium Long term,4-5 min 

Nov. 10,1976 Brittany, France Long term 

July 23, 1987 Tokyo, Japan Long term, 20 min 

Dec. 19,1978 France Long term, 26 min 

Aug. 22,1970 Japan Long term, 30 min 

 

1.2 Scope of Work  

 

The goal of this thesis is to elaborate on the methods of online voltage stability 

monitoring. Online voltage stability monitoring is the process of obtaining voltage 

stability information for a given operating scenario. The prediction should be fast and 

accurate such that control signals can be sent to appropriate locations quickly and 

effectively.  

One approach is to get the stability information directly from the phasor 

measurements obtained for operating conditions. This approach is simple and requires 

few computations. The methods proposed are based on Thévenin equivalent of a system 

[3]. The Thévenin equivalent, according to the maximum power transfer theorem, is the 

upper limit of the power transfer to a load bus. To get the Thévenin equivalent we need at 
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least two sets of phasor measurements [8]. It is found that Thévenin equivalent gives a 

highly optimistic approximation of power margin. The work done in this thesis 

compensates the optimistic prediction by applying reactive power availability 

information of the system. 

In another approach, offline observations (either simulated results or stored 

measurements) are used to build a statistical model of the power system. The model takes 

measurements consisting of current state as the input and returns the voltage stability 

information as the output. The model is periodically updated as the power system evolves 

through time into different unanticipated states. Artificial intelligence methods such as 

expert systems [9, 10], decision trees (DTs) [11, 12, 13] and neural networks [14, 15] fall 

into this category. The use of decision trees is gaining popularity because of its simplicity 

and the structural insight they provide on the decision being made. This study is, thus, 

focused on improving the application of decision trees in power systems. This is 

accomplished by a new method for attribute selection based on the principles of power 

systems. 

 

1.3 Thesis Outline 

 

In Chapter 2, existing tools for voltage stability analysis are described and a brief 

introduction on the voltage stability problem is given. Chapter 3 reports state of the art 

methods for online voltage stability monitoring. Chapter 4 presents an analytical 

approach in determination of voltage stability margin using online measurements by 

consideration of reactive power availability. In Chapter 5, decision tree methodology in 

power system industry and attribute selection method based on tangent vector elements 

has been described in detail. Finally, Chapter 6 provides the conclusions and suggestions 

for future work. 
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2 ELEMENTS OF VOLTAGE STABILITY ANALYSIS 

 

2.1 Overview 

 

Voltage instability is a non-linear phenomenon. It is impossible to capture the 

phenomenon as a closed form solution. The instability is manifested once the network 

crosses the maximum deliverable power limit. There are various types of dynamics 

associated with the problem, the critical ones being, load dynamics, generator reactive 

power limits and contingencies in the form of element outages. Voltage instability is 

classified in terms of scale of disturbance (small and large) and in terms of time of 

response (short term and long term) [1].  

In the following sections, different aspects of voltage instability problem and their 

respective roles are described.  

 

2.2 PV Curves 

 

The PV curve is a power voltage relationship at a bus [2]. Figure 2.1 is an 

illustration of a typical PV diagram. ‘V’ in the vertical axis represents the voltage at a 

particular bus while ‘P’ in the horizontal axis denotes the real power at the corresponding 

bus or an area of our interest. The solid horizontal nose-shaped curve is the network PV 

curve while the dotted parabolic curve is the load PV curve. The operating point is the 

intersection between the load and the network curves [2]. Load PV curve shows the 

variation of power consumed by a load at a bus with respect to voltage applied to the load 

which depends upon the load characteristics. The commonly referred PV curve is the 

network PV curve. It is the network voltage response at a particular bus due to load 

increase in a certain area or bus of a power system. As the system moves from one 
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operating point to another, constant power characteristics and power factor of the load is 

assumed. The top half of the curve is the stable solution while the bottom half is unstable 

(determined by load characteristics but deemed unfeasible for power system operation 

due to high current and low voltage). The two solutions coalesce at a point called the 

critical point (also referred as, the nose point or the point of maximum power transfer). 

Beyond this point, the power flow does not converge. There are number of factors such 

as the generator reactive power limit, contingences, load dynamics, stress direction, etc 

that affect the distance of the nose point from the point of operation. By understanding 

these factors the system can be steered away from the nose point and make the system 

stable. 

 

 
 

Figure 2.1 Load and network PV curves 
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2.2.1 PV Curve Tracing 

 

PV curve tracing is computationally intensive and requires proper techniques to 

avoid numerical instability. For a simple two bus system, a closed form expression can be 

developed [2]. A series of network PV curves (for varying power factor) has been drawn 

using this expression in Figure 2.2. Although the curves are for a two bus system, the 

shapes are quite general.  

 

 
Figure 2.2 PV curves for different power factors 

A closed form expression for voltage and power in large systems (systems with 

more than two buses) is not possible. In such a case, the technique is to solve the power 

flow equations numerically for each operating point. This makes the tracing highly 

computational. As the system gets closer to the nose point, getting convergence is 
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difficult. This is because, the power flow Jacobian approaches singularity towards the 

nose point and becomes singular when it is at the nose point. The singularity causes the 

power flow solution to diverge. Continuation power flow (CPF) [16] method is 

commonly used to solve the divergence problem. 

 

2.2.1.1 Continuation Power Flow (CPF) Method 

 

Equation 2.1 is the state-space representation of a power system. 
 

       2.1 

 

This is a differential–algebraic system (DAS). In equation 2.1, � represents 

dynamic state variables of the system (mostly rotor angles, rotor speeds, torque, etc), 

represents the algebraic state variables (usually bus voltage magnitudes and angles) and 

     represents the parameters (real and reactive power injections at each bus) appearing in  and � . The function  denotes the differential equations for generators, tap changing 

transformers, etc and the function � represents the power flow equations. 

The point at which the Jacobian of the system of equations 2.1 becomes singular 

is called bifurcation point. At this point, different branches of equilibrium points intersect 

each other. The Jacobian of equation 2.1 can be represented as follows: 
 

        2.2 

 

Here, �� is the power flow Jacobian. The singularity of � guarantees that the system goes 

into bifurcation while the singularity of �� may or may not lead to bifurcation. The load 

level which produces a singular load flow Jacobian should be considered an optimistic 

upper bound on maximum loadability. For voltage collapse and voltage instability 

0 � ���, �, �� 

�� � ��, �, �� 
 

� � �� ��� ��� 
 

� 

� 
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analysis, any conclusion based on the singularity of the standard load-flow Jacobian 

would apply only to the phenomenon of voltage behavior near maximum power transfer. 

Such analysis would not detect any voltage instabilities associated with synchronous 

machine characteristics or their controls. �� approaches singularity as the system loading 

is gradually increased. [17]  

The CPF can be summarized using the flow chart shown in Figure 2.3. This is 

based on predictor- corrector process. From a known operating point, a prediction is 

made towards a more stressed condition by increase of the load parameter λ. Small 

enough steps should be taken such that the power flow at each step converges quickly. 

Corrector step succeeds predictor step. In corrector step, the solution of the power system 

at the predicted parameters is obtained. The requirement of the corrector step is to correct 

the linear prediction of non linear equations. For the correction step, a parameter called 

the continuation parameter is fixed. This step is crucial as it forces the system to come 

back to the solution. The process is repeated until we reach the critical point  ��. 
The Predictor step is used to determine the tangent vector. This is accomplished 

by solving equation 2.3. 
 

2.3 

The matrix of derivatives in equation 2.3 is simply conventional power flow 

Jacobian augmented by one column ( �� ) and � defined as, �= !" !# !�$% is the 

required tangent vector. After this, an appropriately dimensioned row vector is added 

with all elements equal to zero except the kth element, which is set to 1. Proper choice of 

the index k, such that tk=±1 imposes a nonzero norm on the tangent vector and guarantees 

that the augmented Jacobian will be nonsingular at the critical point. Hence, the tangent 

vector is determined as the solution of equation 2.4. 

 

 

&�' �( ��) * +!"!#!�, � 0 
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2.4 

 
 

The next operating state is predicted as in equation 2.5. 

 

2.5 

 

In equation 2.5, ‘*’ denotes the predicted solution and ‘σ’ is a scalar designating step 

length. 

The corrector step is accomplished by local parameterization; where original set 

of equations are augmented by an equation that specifies the value of one of the state 

variables called the continuation parameter. The simultaneous equations solved are as in 

equation 2.6. 

 

2.6 

Where, η is an appropriate value for the kth element of x.  

Another approach for implementing the corrector step is the perpendicular step 

method. The additional equation is the condition that the vector connecting the corrected 

solution and the predicted solution should be perpendicular to the tangent vector. Thus 

the sets of equations to be solved are as in equation 2.7. 

2.7 

 

Next, the continuation parameter is selected as  in equation 2.8. 

2.8 

Finally, the critical point is identified by checking the sign of !� component of 

the tangent vector. Positive value signifies upper portion of the PV curve, negative value 

-"�.��� / � +".�, 0 1 +!"!#!�, 

2 �����3 4 56 � 0, � � +".�, 

� ����7�89: 4 �89:,;<. �� � 0 

�3: |�3| � @A�B|�:|, |�C|, … |�E|F 

2�' �( ��G3 6 * +!"!#!�, � H 0I1K 
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signifies the lower section of the curve and zero means the critical point. The tangent 

vector that is obtained as an intermediate step in continuation power flow contains 

sensitivity of the power flow parameters with respect to real power loading. This 

information is used in selecting the attributes in Chapter 5. 

 
 

Figure 2.3 Flowchart for continuation power flow 
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2.3 QV Curves 

 

QV curve is the relationship between the reactive support Qc and the voltage at a 

given bus. It can be determined by connecting a fictitious generator with zero active 

power and recording the reactive power Qc produced when the terminal voltage is varied 

[2].  

 

 
 

 Figure 2.4 Setup to produce VQ curves 

 

 

Considering the two bus examples as shown in Figure 2.4, the power flow 

equations are as shown in equations 2.9. 

 

2.9a. 

     

 2.9b 

 

 

VQ curve is a characteristic of both the network and load. For analysis of steady 

state operation, the steady state load characteristics needs to be considered. Here, a 

constant power load characteristic is assumed which is a common practice. 

L � 4 M.N OPQR 
 

S 4 ST � 4 .CN 0 M.N UVOR 
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For a given value of real power (P) and voltage (V), θ is determined from 

equation 2.9a. Then Qc can easily be determined from equation 2.9b - using the value of 

load reactive power and the variable determined from the first part. The result yields a 

QV curve similar to the ones shown in Figure 2.5. The minima of the curves indicate the 

available reactive power margin before the system goes to voltage collapse. As shown in 

the figure 2.5, the lengths of the arrows give the reactive power margin in terms of 

appropriate units. Curve 1 has negative margin. Thus there is no voltage level for which 

this system can be operated without some external reactive support. Curve 2 is a stable 

case with some reactive power margin and curve 3 has even more margin. More margin 

implies more robustness of the system in terms of voltage stability.  

The right hand side of the QV curve with positive slope is the stable region and 

the left hand side of the QV curve with negative slope is the unstable region. They can be 

computed at points along the PV curves to test system robustness. There is no divergence 

at the nose. This makes the QV curve computationally attractive. 

The nature of slope of the QV curves gives us indication of how different devices 

impact voltage stability of the system. For example, with generating units hitting the 

reactive power limits, the QV curve flattens out. This signifies the closeness to instability. 

With QV curves the characteristic of shunt reactive compensation at the test bus can be 

plotted [18]. The operating point is the intersection of the QV system characteristic and 

reactive compensation characteristic. This directly gives us the notion of reactive power 

margin and the current operating point, which is useful for planning and operation 

purposes. 
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Figure 2.5 QV curves for different load levels 

One of the information that can be accessed from the curves is the sensitivity of 

the loads to the reactive power sources. While varying the reactive power requirements of 

a bus, the generators that deplete their reactive reserves the most, form the reactive power 

sources for that bus. This quality of the QV curves has been used in the determination of 

voltage control area (VCA), as described in detail in Chapter 4. 

 

2.4 Load Models and Dynamics 

 

Load is an important factor of voltage instability. Load characteristics also govern 

the dynamic evolution of voltage instability. The point of voltage collapse can be 

different for different load models. Therefore, it is necessary to understand the load 

correctly and model it accordingly. At the same time it is a difficult task because bulk 
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power system is an aggregate of loads of varying characteristics. Another important 

aspect is the load restoration dynamics which includes slow and fast acting loads. Load 

restoration attributes to the fact that power system has the tendency to restore its voltage 

level through some of the devices, as load tap changers or voltage controller of generators 

and static reactive controllers. As a result, the load is restored to its original level by 

establishing the set point voltage in the final state. The power restoration can be fast as in 

the induction motors [7, 19], high voltage direct current (HVDC) links [2, 7] or slow as in 

the load tap changers (LTC) and thermostatic load recovery [2].  

Load voltage characteristics, or simply load characteristics, is an expression 

which gives the active or reactive power consumed by the load as a function of voltage 

and an independent variable called the load demand. Denoting load demand as z, the 

general form of load characteristics is as shown in expression 2.10  

 

2.10 

Exponential and ZIP (constant impedance, constant current, constant power) load 

models are some of the commonly used load models [2].  

 

2.5 Generator Excitation Limits 

 

Generators are the main source of reactive power in the power system. Their 

reactive capacity is limited by field current, armature current and end region heating limit 

or under excitation limit, as shown in Figure 2.6 [18]. This figure gives a tentative model 

of the reactive power capability of a generator. Power flow programs mostly model the 

generators as having reactive power limits as marked by the broken lines in Figure 2.6. 

This is a simple and conservative model of the capability curve. The maximum reactive 

power output is set using an over excitation limiter (OXL). Due to time-inverse 

characteristic of OXL, we have the generators cutting off reactive power supply after the 

L � L�W, .� 

S � S�W, .� 
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excitation current hits its limit. This can result in long term voltage instability. As soon as 

the OXL hits the limit, further increase in reactive power is not possible [20]. This is 

observed in PV and QV curves as a sharp discontinuity. In this thesis, the inability of 

Thévenin like methods to anticipate this discontinuity has been thoroughly explored. 

 

 
 

Figure 2.6 Generation capability curve 

 

2.6 Types of Voltage Instabilities 

 

Based on the severity and time of action of different devices there are four 

categories of voltage instabilities [1] have been quoted in the following paragraphs. 

“Large-disturbance voltage stability refers to the system’s ability to maintain 

steady voltages following large disturbances such as system faults, loss of generation, or 

circuit contingencies. The study period of interest may extend from a few seconds to tens 

of minutes.” 
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“Small-disturbance voltage stability refers to the system’s ability to maintain 

steady voltages when subjected to small perturbations such as incremental changes in 

system load. This form of stability is influenced by the characteristics of loads, 

continuous controls, and discrete controls at a given instant of time. This concept is 

useful in determining, at any instant, how the system voltages will respond to small 

system changes.”  

“Short-term voltage stability involves dynamics of fast acting load components 

such as induction motors, electronically controlled loads, and HVDC converters. The 

study period of interest is in the order of several seconds, and analysis requires solution 

of appropriate system differential equations.” 

“Long-term voltage stability involves slower acting equipment such as tap-

changing transformers, thermostatically controlled loads, and generator current limiters. 

The study period of interest may extend to several or many minutes, and long-term 

simulations are required for analysis of system dynamic performance.”  

 

2.7 Voltage Stability Dynamics Using Network and Load PV 

Curves 

 

In this section, the process of voltage stability dynamics is explained using the aid 

of network and load PV curves [2]. This is illustrated in Figure 2.7.  

An operating point of a power system is the intersection of load characteristics 

and network characteristics. As long as there is a point of intersection between the two 

curves, an operating point can be obtained. Consider a contingency that results in a new 

network PV curve and hence the system moves from point a to point b. Point b 

corresponds to the short term load characteristics. In the long term, the power restoring 

devices act on the system. This gives the final operating point c’ through c. The vertical 
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line ac’ is the long term load characteristics. The intersection implies that the system is 

able to restore power at steady state. In the steady state analysis, constant power 

characteristics of the load is assumed, which is also the most restrictive assumption. 

 

 
Figure 2.7 Voltage stability dynamics sequence 

Consider the outage of another device from the system at point c. Consequently 

we have a smaller PV curve and the new point of intersection is d. However, there is no 

intersection between the load and network curves in the long run. The system then 

becomes long term voltage unstable. 

 

2.8 Conclusion 

 

This chapter gives a general overview of the mechanism of voltage instability 

tools available for study and factors to be taken into consideration for improving the 

voltage stability. For an extensive voltage stability assessment of a system, all of these 

factors have to be taken into account. The details in modeling should be included 
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intelligently. For example, it is not necessary to model the dynamics of the load 

restoration devices and fast acting loads if the purpose is to find the static stability margin 

of the system. Drawing the PV curve with constant power models is sufficient for that 

purpose. On the other hand to determine the control actions in order to overcome short 

term voltage instability the detailed modeling of load and timing sequence of different 

devices becomes necessary. For the online voltage stability monitoring to estimate the 

static voltage stability margin, it is customary to model loads as constant power and 

generators to have constant reactive power limits. 
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3 REVIEW OF ONLINE VOLTAGE SECURITY MONITORING 

 

3.1 Overview 

 

Power system security is the ability of the system to survive likely disturbances 

(contingencies) without interruption to customer service. Basic framework for security 

was first proposed by Dy Liacco [21]. He considers the power system as being operated 

under two sets of constraints: load constraints and operating constraints. 

The load constraints impose the requirement that the load demands must be met 

by the system. The operating constraints impose maximum or minimum operating limits 

on system variables and are associated with both steady-state and dynamic stability 

limitations. The conditions of operation can then be categorized into three operating 

states: normal, emergency and restorative. The conceptual framework established by the 

three operating states has been illustrated in Figure 3.1. A system is in the normal state if 

both the load and operating constraints are met. A system is in the emergency state when 

the operating constraints are not completely satisfied. A system is in the restorative state 

when the load constraints are not completely satisfied. This is the case of either a partial 

or a total system shutdown. 

This research is focused on the security monitoring aspect, where the objective is 

to determine if the power system is operating in normal state using the real-time 

measurements. The method developed can be extended to security analysis by 

considering a contingency list.  
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Figure 3.1 Power system operating states and the associated state transitions due to 

contingencies and control functions 

Online security monitoring poses the problem of finding the distance of an 

operating point from stability. The measure obtained may be qualitative or quantitative. 

Qualitative measure doesn’t give the exact megawatt (MW) margin but some number that 

can be interpreted in terms of stability, known as an index. Quantitatively we know exact 

MWs from distance to stability with respect to a credible scenario. Finding MWs can be 

computationally intensive, so the focus is in generating a voltage stability index. For 

online applications, these indices are such that they can be calculated from the available 

online measurements. This thesis however, proposes a fast method of accurately getting 

the quantitative measure of voltage instability from online measurements. Alternately, 

offline calculations and stored measurements can be used to build a statistical model of 

the power system. In the following sections, state of the art on index based voltage 
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instability measure and artificial intelligence based voltage instability measure are briefly 

discussed. 

 

3.2 Index Based Voltage Instability Measure 

 

There are certain irregularities or uniqueness in the system behavior towards the 

onset of voltage instability. The index based instability measure captures this unique 

system behavior in terms of a number and interprets them to give the notion of distance to 

instability. The indices can be used as a reference value to run a control routine. Some 

examples of system characteristic towards voltage instability are-the singularity of load 

flow Jacobian as discussed in Chapter 2, the generators hitting their reactive power limits, 

Thévenin equivalent approaching load impedance, etc.  

 

3.2.1 Index from Direct Phasor Measurements 

 

There has been a drive for getting voltage stability index directly from phasor 

measurements with the installment of Phasor Measurement Units (PMUs). The PMUs 

can give an accurate measure of voltage and current phasors in a snapshot. Phasor 

measurements have been applied for the calculation of voltage collapse proximity index 

in radial networks [22, 23]. The phasor measurement based approach for estimation of 

voltage stability index can be extended to general systems [3, 24, 25]. The method is fast, 

but yields poor accuracy. 

 In a study done by Haque [26], a prediction algorithm for the Thévenin 

equivalent is proposed. The proposed approach fails to address the issue correctly as the 

reactive power reserves of the system have not been taken into account during prediction 

of voltage stability margin. Begovic and Milosevic [27] use availability of reactive power 
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reserves without any discussion of the relationship with the Thévenin equivalent. The 

simplest version of Thévenin equivalent method can be described as follows [3]: 

Figure 3.2 is a Thévenin equivalent representation of the power system with 

respect to the load bus under consideration. By equating the receiving and sending end 

currents we get the expression 3.1. 
 

3.1 

 

 

Equation 3.1 is quadratic in .X  and there are two solutions for a given power 

demand: L 0 YS. By symmetry, if .X  is one of the solutions then �MXZ[ 4 .X��  is the other. 

The two solutions will be equal at the maximum power transfer and the solution will 

cease to exist for the demand beyond the maximum power transfer. 

 

 
Figure 3.2 Thévenin equivalent representation of the power system 

Hence, at maximum power transfer, relations 3.2, 3.3 and 3.4 exist. 

3.2 
3.3 

L 0 YS.X � \ ]� � ^MXZ[XXXX 4 .X_Z[ `�
 

�L 0 YS�_Z[� � .X�MXZ[ 4 .X�� 

.X � �MXZ[ 4 .X�� Va, _]b;; * \] � �_]Z[ * \]�� 
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3.4 

 

The apparent impedance _]b;;is calculated as the ratio of voltage and current 

phasors measured at the bus. The distance between the parameters, _]b;; and _]Z[  gives 

the margin for stability, which can be directly related to power margin.  

To determine the Thévenin Equivalent, consider the equation 3.5. 

3.5 

In equation 3.5, .Xand \ ] are measurable quantities. They are the measurements 

obtained from PMU. Since equation 3.5 has two unknowns- MXZ[ and_]Z[, at least two 

measurements are required to estimate them. One of the drawbacks of the method that 

can be pointed out here is the required interval between the readings. The time window 

for measurement should be such that the loading condition changes but the network 

conditions do not. The assumption is reasonable but can’t be guaranteed. Pal et al [24], 

propose a solution to this issue by proactive movement of the tap changer transformer. To 

avoid multiple readings for the Thévenin equivalent, Larsson et al [25] have limited the 

application to transmission line corridor. For the case of two readings,  McZ[and _]Z[can be 

directly calculated as in equation 3.6 involving complex calculations. 

 
 

3.6 

 

 

 

For a general case, let McZ[ � Md 0 YMX8, .X � e 0 Yf AQ! \ ] � g 0 Yh. Thus 

equation 3.5 can be broken down into real and imaginary parts and written in the matrix 

form as in expression 3.7. 

Va, i_]b;;i � |_]Z[| 

MXZ[ � .X 0 _]Z[\ ] 

MXZ[ � \]:.XC 4 \]C.X:\ ]: 4 \]C  

_]Z[ � .XC 4 .X:\ ]: 4 \]C  
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3.7 

 

Decomposing 3.7 we get, 
 

3.8 

Equation 3.8 is a multi linear equation. The coefficients which are the real and 

imaginary parts of Thévenin source voltage and impedance can be determined by the 

method of least squares [28]. 

 

3.2.2 Index from Load Flow Jacobian 

 

The use of singularity of the power flow Jacobian matrix as an indicator of 

steady-state stability was first pointed out by Venikov et.al [29], where the sign of the 

determinant of the load flow Jacobian was used to determine the system stability. As 

discussed in Chapter 2, the singularity of load flow Jacobian doesn’t necessarily mean 

that the system Jacobian is also singular. However, for voltage collapse and voltage 

instability analysis, any conclusions based on the singularity of the standard load-flow 

Jacobian would apply only to the phenomenon of voltage behavior near maximum power 

transfer [17]. Such analysis would not detect any voltage instabilities associated with 

synchronous machine characteristics or their controls. �� approaches singularity as the 

system loading is gradually increased. 

Based on these assumptions we have methods related to singular value 

decomposition, eigenvalue decomposition and test function techniques [4, 5, 30, 31]. The 

idea is to track the minimum singular value or eigenvalue of the system. The smaller the 

value, closer the system is to collapse. This information is embedded in the right and left 

21 0 4g0 1 4h    h4g6 * j MdM8kZ[NZ[
l � HefK 

1. Md 0 0. M8 4 g. kZ[ 0 h. NZ[ � e 

0. Md 0 1. M8 4 h. kZ[ 4 g. NZ[ � f 
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eigenvectors associated with the critical eigenvalue which will be discussed shortly. 

However, the smallest eigenvalue (or the singular value) may not be the most sensitive 

and some other eigenvalue may approach singularity even more quickly. Thus, it might 

be critical to track a number of eigenvalues. The methods give a very good insight about 

the system such as critical buses and critical stress directions with respect to voltage 

collapse.  

The Gao et al [5] discuss the eigenvalue decomposition technique for voltage 

stability index determination. The decomposition may be applied directly to the reduced 

load flow Jacobian matrix as it is quasi-symmetric [31] and, therefore diagonalizable. 

Furthermore, due to quasi-symmetric structure, one expects to obtain a set of only real 

eigenvalues and eigenvectors, very similar to the corresponding singular values and 

singular vectors. 

 

3.2.3 Other Techniques 

 

 L-index [32, 33] is another important voltage instability index whose feasible 

value ranges from 0 to 1. Values closer to 1 suggest that the system is closer to 

instability. The limit criterion is such that both load flow Jacobian singularity and the 

maximum power transfer theorem hold true.  

Availability of reactive reserves has a direct relationship to the voltage stability 

margin. Voltage instability is a local problem as reactive power cannot be transported to 

long distances due to the inherent inductive nature of the transmission system. As a result 

many studies have explored the role of system reactive power sources such as 

synchronous machines, switched capacitors and static voltage controllers towards 

contribution in voltage stability. [6, 34, 35, 36, 37, 38, 39, 40, 41] 
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L.H. Fink [6] proposes real-time reactive security monitoring by monitoring the 

contingent VAR (voltage ampere reactive) margins of all the zones within a given 

system. Zones are a group of one or more “tightly” coupled generator buses, together 

with the union of the sets of load buses that they mutually support. The idea behind the 

method is that the voltage stability problem has a local origin and that it is directly related 

to the availability of reactive power sources. Schlueter [34-36] proposes the 

determination of proximity to voltage collapse by monitoring the reactive reserves. The 

reactive reserves are obtained by determining VCAs. In a recent method [37], VCA is 

determined directly by the method of sensitivity. 

Further, in reactive reserve monitoring, use of switched capacitors to maintain 

VAR reserves in a system [38] and use of generator rotor heating level as an indicator of 

system voltage stability [39] have been suggested. BPA developed a system that 

monitored many key generators [40]. This work introduced an index that measured the 

total reserve level of a system. A small index value would mean that the system is short 

of VAR reserve. However, the method did not quantify the relationship between the VAR 

reserve level and the voltage stability level. As an extension, Bao et al [41] proposed a 

method to relate the VAR reserve level with voltage stability margin by monitoring 

certain key generators which have a prominent role in determining the level of voltage 

stability through their reactive reserves. This is a very good indication of use of reactive 

reserve for voltage stability margin determination.  
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3.3 Artificial Intelligence Techniques 

 

Intelligence to the monitoring tools can be inputted via simulation (experimental 

data) or scientific rules or rules based on ad hoc knowledge of experienced operators. 

These techniques are called artificial intelligence techniques. For the tools to perform 

better we need to train them with as much data and scenarios as possible. It is up to us to 

decide how large a dataset we want to work on. This is important because it is possible to 

literally have infinite number and dimension of data points. Dimension meaning the 

number of variables under observation. Both number and dimension of data is important 

to reduce the training time, complexity as well as accuracy of the result. 

An important classification of artificial intelligence techniques is based on their 

inductive or deductive nature. Inductive techniques gather information or develop a 

model from the available data directly to give the decisions while the deductive technique 

works on the set of rules and series of deduction before coming to a conclusion. The rules 

have to be fed via experts or these could very well have been generated from data itself. 

The deductive machines are also called expert systems. It is difficult to generate rules for 

deduction especially for very complex systems such as power systems which makes 

inductive techniques more attractive. 

Some of the popular artificial intelligence approaches are expert systems, decision 

trees, artificial neural networks, genetic algorithms and fuzzy systems. 

As mentioned, expert systems are deductive machines. Expert systems can be 

compared to human operators with much faster response. The speed is highly desirable 

because humans would have very little time to react against sudden and large 

disturbances which can cause the system to collapse in split seconds. An expert system 

package has four main parts: Inference Engine (IE), Knowledge Base (KB), Data Base 

(DB) and Explainer. The information from state estimation, security assessment and the 
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generator reactive reserves forms the DB. The IE takes the data in the database to 

interrogate rules in knowledge base. [9] L-index can be an input to the expert system. 

Based on the index values decision is made according to the predefined if-then rules. [10] 

The artificial neural network (ANN) approach [14, 15], decision tree approach 

[11, 12, 13] , k-nearest neighbor approach [42] are inductive learners. The decision tree 

technique is a classification technique that can be used in voltage stability assessment to 

categorize a given operating state as either stable or unstable. However, we can also have 

a range of stability margin. One of the goals of the thesis is the study on improvement of 

decision tree approach as applied in voltage instability of power systems. The details will 

be provided in the fifth chapter. K-nearest neighbor technique is another simple 

classification method. This method is based on voting system. A new operating point is 

classified based on its proximity to the training instances. Let K=5. If a proximity 

measure gives 3 instances close to the test vector that are stable and 2 close to those that 

are not stable then the test vector is classified as stable.  

ANNs have been used in voltage stability analysis to detect voltage instability (i.e. 

classification) and function approximation (estimating margin). The input to the model is 

power flow results and the output is an index such as L-index or index based on singular 

value decomposition (SVD). Just like the decision trees ANNs are trained off-line using 

previous data. 

The genetic algorithms (GAs) [43] are used in voltage stability based problems 

for planning and other optimization situation. They are search algorithms which find the 

fittest combination of variables or the optimal set. They can be used to support decision 

trees or ANNs in reducing the attributes of the dataset. Fuzzy theory [44] is also used in 

aid with machine learning approaches. In voltage stability problems the magnitude of 

output variable is employed to label the voltage security levels. 



www.manaraa.com

29 
 

3.4 Conclusion 

 

In this chapter a broad picture of power system security assessment has been 

presented. It gives us the background to understand the relevance of the work involved in 

this thesis. Literature survey of the currently employed methods has been systematically 

presented. It has been emphasized that computational efficiency (speed) is the key 

element for online stability monitoring. The drive towards the goal has either been 

through increasing the power of computational devices (i.e., having parallel machines) or 

by reformulating the problem such that the information is interpreted differently requiring 

less computational effort (i.e. index). The later is the philosophy behind using the voltage 

instability indices.  

Data from field measurements can be important source of system information. 

Using artificial intelligence techniques information from the data can be extracted for 

stability monitoring. This chapter also gives an introduction to those techniques and 

provides a foundation for the fifth chapter.  
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4 VOLTAGE STABILITY MARGIN PREDICTION USING 

REACTIVE POWER AVAILABILITY 

 

4.1 Overview 

. 

The analysis of voltage stability phenomenon is performed statically or 

dynamically depending upon the requirement. The static method is used to estimate the 

voltage stability margin from the current operating point for a given scenario. PV curve 

tracing based on continuation power flow [16] is one such tool. Index from load flow 

Jacobian is useful for static voltage stability monitoring. On the other hand dynamic 

voltage stability analysis is to understand the voltage stability mechanism and determine 

the control actions such as maintaining reactive power reserves, generator excitation 

limiter actions, capacitor switching, transformer tap setting and others through time 

domain simulations [45, 46, 47]. These methods are computationally burdensome; 

therefore their adoption in the real-time environment is infeasible. 

With the development of PMUs and wide area measurement system, high level 

accuracy and speed is achieved in measurement of the power system states. Sufficient 

number of PMU location gives complete state estimation of the system [48, 49]. Various 

efforts [3, 22-27, 50, 51] have been made in order to apply the fast and accurate phasor 

measurements for real time voltage stability monitoring. Artificial intelligence methods 

as discussed in Chapter 3 use the phasor measurements to assess the current system 

conditions and give the voltage stability information based upon model developed from 

the stored measurements. Alternately we have methods based on local phasor 

measurements that can be implemented in a distributed manner so as to account for the 

entire network. The proposed methods as mentioned are heavily dependent on the 

accurate estimation of the Thévenin equivalent. Gubina et al [50] and Corsi [51] have 
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proposed more accurate methods of Thévenin equivalent estimation. The method 

however has one further issue of not being able to adjust for the effect of the generators 

hitting their limits. The forecast is exact if the network equivalent stays unchanged and if 

no limiting devices act. The forecast is believed to be optimistic but no further discussion 

on the resolution of the issue is available. [52] Because of the discontinuous change in 

Thévenin equivalent (when a generator hits the limit) it is not recommendable to directly 

predict Thévenin equivalent or its direct derivatives. Other voltage stability indices [4, 5, 

30-33] also share this characteristic of having discontinuity when the generators hit their 

limits. Thus, it is essential to take into account the reactive supply depletion when 

predicting an index or a margin. The work here identifies a systematic approach to take 

care of the discontinuous drop of network strength due to exhaustion of reactive power 

supply to a bus. The real time observations that we need are reactive power generation of 

different generators and the loading at the different buses. This data is readily available 

from the SCADA. Given the observability of the system via PMUs, direct phasor 

measurements could be used for the margin prediction.  

In section 4.2 background and the motivation of the method is presented. The 

application of the method for various scenarios has been proposed in section 4.3. Section 

4.4 describes the online implementation of the method. The results are demonstrated in 

section 4.5. Finally section 4.6 gives the concluding remarks. 
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4.2 Background and Motivation 

 

The objective here is to predict the maximum loadability of a bus (point ‘B’, 

Figure 4.1) from a given operating condition (point ‘A’ Figure 4.1). In this work, using 

the real time measurements, the task has been accomplished by a blend of offline and on 

line calculations.  

 
 

Figure 4.1 Reactive power and margin estimation 

The over prediction of stability margin due to Thevenin equivalent is because the 

prediction is in terms of network strength. However, power systems are more often 

choked off of reactive supply. As a result we have a voltage instability situation much 

before the limit obtained using the maximum power transfer theorem (the case for 

Thévenin and similar methods). Schlueter [36] discussed manifestation of voltage 

instabilities. The exhaustion of reactive power sources for a given voltage control area 

(VCA) or loss of voltage control is followed by exponential increase in reactive power 

loss (clogging). Clogging can completely choke off the reactive power flow to the VCA 

needing reactive support.  
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The Thévenin equivalent method draws our attention to the type of voltage 

instability where the network is no longer able to transfer power. This is a case that 

would arise with sufficient reactive power but insufficient network strength.  

Hence, considering the two situations, ideally the power margin should be: 

minimum (power margin by network, power margin by reactive power availability) 

The two margins have been distinguished by classifying the buses as ‘reactive 

reserve limited’ and ‘transmission limited’ as an explanation to justify misclassification 

of some of the buses by the sensitivity based method [37]. The difference in margin due 

to shortage of reactive power and network strength can easily be demonstrated using a 3 

bus system as shown in Figure 4.2. Buses 1 and 2 are strongly tied while the tie between 

buses 2 and 3 is relatively weak. Generator 1 is the primary source of reactive power for 

load at bus 2 while the generator at bus 3 is not.  

 
Figure 4.2 Three Bus Test System 

Figure 4.3 is a plot of loading at bus 2 in the horizontal axis against the power 

predicted by Thévenin equivalent method in the vertical axis. The initial prediction 

(initial portion of the curve), approximately at 23 p.u. is the maximum power that could 

be transferred, if we had unlimited reactive supply. There is a sudden dip in predicted 

power margin at a loading of 6.7 p.u. At this point Generator 1 (reactive power limited at 

4 p.u.) hits the limit and the power predicted drops to 8.0 p.u. Eventually, the power flow 

diverges at 7.9 p.u. It is the indication of generator at bus 3 hitting the limit as well. The 
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simulation of Figure 4.3 was done using various levels of reactive capacity (in Figure 4.3 

the limit placed was 5 p.u.) of generator at bus 3 and fixed reactive capacity of generator 

at bus 1. Even after considerable increase in reactive capacity of generator 3 it was found 

that the increase in margin was not significant. Figure 4.4 is the corresponding PV 

diagram. The proximity of margin due to loss of voltage control (exhaustion of local 

reactive sources) and clogging is demonstrated [36].  

 

 
Figure 4.3 Thévenin power predictions with high limits on generator at bus 3 
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Figure 4.4 Maximum power obtained for reactive power limited generators 

There are two observations: 

• The maximum margin for loading at bus  is influenced by reactive power 

availability at certain generators ( here, it is generator 1 that influences 

the loading at bus 2) 

• If we had the reactive reserves large enough then the maximum power 

transferable is constrained by the network limit (here 23 p.u. as predicted 

by the Thévenin model initially where the generator 1 hitting its limit was 

not anticipated). This situation wasn’t observed for the test systems 

considered. 

With the above observations it is therefore sufficient to consider reactive reserves 

contributing to point of loss of voltage control for the voltage stability margin prediction. 
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4.3 Proposed Method 

 

Suppose, the maximum reactive power (Smnbopqo) that can be supplied to a load 

bus is known. With the assumption that the load increases with constant power factor, the 

maximum real power (Lmnbopqo) that can be transferred to a bus is given by equation 4.1.  

 4.1 

 

Given the nonlinear nature of power system it is very difficult to 

estimate Smnbopqo. The general form of reactive power equation for the maximum loading 

of a particular bus can be formulated as in equation 4.2. 

 4.2 

 

Where, SZnZbm : total reactive power that is consumed by the system at maximum loading of the 

given bus Smnrrpqo : reactive power loss at maximum loading SqpZsnd3pqo : reactive power consumed by the rest of the network buses which may be a 

constant or may vary depending upon system scenario Smnbopqo: maximum reactive power loading of the bus under  consideration 

 

In equation 4.2, Smnbopqo can be determined only if SZnZbm, Smnrrpqoand SqpZsnd3pqo can be estimated beforehand. Depending upon system 

complexity and scenarios different techniques need to be employed. Figure 4.1 gives a 

high level perspective of the margin estimation process.  The flowchart in Figure 4.5 

gives the outline of steps in power system operation environment which is self 

explanatory. 

Lmnbopqo � Smnbopqo * UV�ø 

SZnZbm � Smnrrpqo 0 SqpZsnd3pqo 0 Smnbopqo 
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In the section that follows, step by step process has been developed for different 

scenarios and complexities of power system. First the method is explained for a simple 

two bus system and further elaborated on a multiple bus system to generalize the whole 

idea. 

 

 
 

Figure 4.5 Flow chart of system operation with algorithm implementation 
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4.3.1 Two Bus System 

 

For the two bus case, equation 4.2 reduces to 4.3 without the SqpZsnd3pqoterm. 

 4.3 

 

This is the simplest case possible as there is no interaction between different 

buses. The load and source are well defined. SZnZbm is the maximum reactive capacity of 

the generator . Smnrrpqo is predicted using the observations of reactive loss and reactive 

power generation level. This is discussed in section 4.3.3. 

 

4.3.2 Multiple Bus System 

 

In this case the reactive power equation is same as equation 4.2. That is, 

4.4      

 

There are three quantities to be estimated before the value of Smnbopqo can be 

determined.  SZnZbm is the summation of maximum reactive powers of generators in the system 

( with the assumption that reactive power sources and sinks are strongly coupled). This 

implies, at the loadability limit all the generators will lose their voltage controllability. SqpZsnd3pqo can be thought of as two types. One is the case where there is load 

increment in single bus while the other is the case where there are multiple load 

increments. For the first case SqpZsnd3pqois a constant and can be obtained by summing 

the reactive load demand at every other bus. For the second case a little modification in 

equation 4.4 is required. Considering proportional increase of load at all buses, the 

equation can be developed as follows. If, SqpZsnd3is the current network reactive power 

SZnZbm � Smnrrpqo 0 Smnbopqo 

SZnZbm � Smnrrpqo 0 SqpZsnd3pqo 0 Smnbopqo 
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absorption, Smnbo is the current reactive power absorption by the given bus and Sb(b8m is 

the net total reactive power that is available for different loads excluding the losses, 

equation 4.4 for this system changes to equation 4.5. 

 

4.5 

 

By proportionality, 

 

 

 

4.6 

 

Replacing 4.6 in 4.5 we get, 

4.7 

 

Next Smnrrpqo is to be estimated to determine Smnbopqo in equations 4.3, 4.4 and 

4.7. 

 

4.3.3 Determination of Reactive Power Loss 

 

Figure 4.6 is a combined plot of reactive loss (Smnrr), predicted maximum reactive 

power loss (Predicted Smnrrpqo) and the Thevenin equivalent (_Z[ ) for a bus, versus the 

total reactive power generation of the system. The reactive power loss and Thevenin 

equivalent have been normalized by their corresponding largest value, while the predicted 

maximum reactive power loss has been divided by the actual maximum value of the 

reactive power loss. In Figure 4.6, reactive power loss is quadratic (approximately) while 

�Smnbo/�SqpZsnd3 0 Smnbo�� * Sb(b8m � Smnbopqo 

Va, Sb(b8m � Smnbopqo | SmnboSqpZsnd3 0 Smnbo}~:
 

 SZnZbm � Smnrrpqo 0 Smnbopqo | SmnboSqpZsnd3 0 Smnbo}~:
 

SZnZbm � Smnrrpqo 0 Sb(b8m 
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the Thevenin equivalent impedance is discontinuous at the operating points where the 

generators hit their limits. Due to the smooth nature of the reactive power loss curve, it 

can be more accurately estimated compared to Thevenin equivalent. Given the quadratic 

nature, the reactive power loss has been modeled as a quadratic function of total reactive 

power generation in this study. 

 
 

Figure 4.6 Combined plots of normalized �����, �������� and 	
� with respect to reactive 
power generation for a typical system (here IEEE 30 bus system) 

The quadratic modeling of the loss curve is given by equation 4.8. 

        4.8 

 

To determine the coefficients a, b, c at least three observations are needed. The 

method employed is the weighted least square estimation [53]. The weighted least square 

formulation is given by equation 4.9. 
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4.9 

 

 

Where,  

 

                                             ,                             

 

In order to get Smnrrpqo, S� in equation 4.8 is to be replaced by total reactive 

power available for the bus under consideration. This is SZnZbm- the reactive power 

generation at the instability limit. The weighing parameter ‘W’ gives more weight to 

recent observations. Formulation in 4.9 is for 3 sets of readings only.  

Determination of reactive loss is one of the key steps in determining the voltage 

stability margin. There are two steps in determination of the Smnrrpqo - the estimation of 

coefficients and the total reactive power allocation for a given bus. These elements 

determine the accuracy of the reactive loss, which eventually determines accuracy of the 

final prediction. 

Figures 4.7 and 4.8 show the reactive power loss curves estimated at different 

load levels for the IEEE 2 and 5 bus systems. The plot is drawn with reactive power loss 

in the vertical axis and reactive power generation of the system in the horizontal axis. It 

shows how the loss curves vary with the obtained values of coefficients at different 

loading stages. The legends, ‘coefficients1’, ‘coefficients2’, etc correspond to the 

coefficients estimated at the initial part of the curve while the legend ‘exact’ is for the 

exact curve. The observed accuracy of coefficient estimation thus justifies the use of the 

method of weighted least square curve fitting. 

N � - 1 1 1S�: S�C S�ES�:C S�CC S�EC / � � +�E 0 00 �C 00 0 �:, � � +Smnrr:SmnrrCSmnrrE, 

�A�U� � �N * � * N���N * � * �� 
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Figure 4.7 Variations of loss curves due to estimation error for 2 bus system 

 
Figure 4.8 Variations of loss curves due to estimation error for IEEE 5 bus system 

  

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Qgeneration, p.u.

R
ea

ct
iv

e 
po

w
er

 lo
ss

 fo
r 

di
ffe

re
nt

 c
oe

ffi
ci

en
ts

, p
.u

.

 

 

coefficients 1
coefficients 2
coefficients 3
actual curve

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Qgeneration, p.u.

R
ea

ct
iv

e 
po

w
er

 lo
ss

 fo
r 

di
ffe

re
nt

 c
oe

ffi
ci

en
ts

, p
.u

.

 

 
coefficients 1
coefficients 2
coefficients 3
actual curve



www.manaraa.com

43 
 

4.3.4 Issues 

 

The issues involved in estimation of power margin are the determination of Smnrrpqo and the estimation of reactive power allocation for a bus which also affects the Smnrrpqo prediction. The reactive allocation problem is difficult for large systems with 

multiple VCAs. The procedure for large systems is explained in the following sections.  

 

4.3.4.1 Application of the Method on Large Systems 

 

For large systems, the coupling between buses varies. This gives rise to groups of 

coherent buses with varying sets of generators as a source of reactive power. Such groups 

are referred as VCAs [30]. It means that a bus cannot get its reactive power supply from 

every generator in the system (the reason why voltage problem is called a local problem). 

The equation 4.5 will not hold if we are to define SZnZbm as the sum of the reactive power 

capacity of all the generators. In order to determine which particular generators supply 

reactive power to which particular buses and in what amount (for generators supplying 

multiple buses), a feasible way of doing it is via the determination of VCAs. The set of 

generators exhausted at the minima of the QV curve of a bus k is the reactive reserve 

basin (RRB) for that particular bus and the set of buses with common reactive reserve 

basin comprise the VCA [30]. 

Considering the above definition, generators get associated with multiple VCAs. 

It is again inaccurate to consider the entire capacity of reactive reserve basins as the total 

reactive power supply for a VCA. For the scenario where the load is changing in all the 

buses of the system; it becomes very naïve to not acknowledge the fact that the reactive 

reserve basin for a given VCA would have a smaller capacity. Reactive reserve basin for 

a VCA would depend on participation of generators in that VCA defined here as 
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participation factors (PFs). A simple way to define the relationship is to consider 

proportionality. The error associated with this is that load sensitivities could be different 

i.e. every VCA may not have same sensitivity towards the generators to be generalized as 

a proportional relationship.  

 

4.3.4.2 Algorithm to Determine VCA [36] and Participation Factors  

 

There are various methods for determining VCAs [36], [37], [54]. For 

convenience and accuracy, the VCA is determined using QV curves [36]. Following are 

the steps for VCA and participation factor determination. 

• Draw QV curve for each load bus. 

• Determine the minima of the QV curve. 

• The generators that exhaust for the minima are the participants in the RRB 

for that particular bus.  

• Once generators have been determined for all the buses and buses with 

common reactive reserve basins sorted out; all the VCAs are determined. 

• For a generator participating  in ‘n’ VCAs, the participation factor of that 

generator in the RRB has been defined as follows: 

Participation Factor (p.f.) of the generator in VCA ‘j’=   

 4.10 

 

Hence the total reactive capacity of a VCA for m generator reactive 

reserve basin is: 

 

4.11 

 

S�∑ S8q8�:  

� �. ��
�

��: * S�b�� 
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Where, S� : total reactive power of a VCA S8: total reactive power of individual VCAs S�b��: maximum Reactive power capacity of a generator �. ��: participation factor of the generators 

 

4.3.4.3 Applying Voltage Control Area 

 

To know the amount of increment of load possible in a given bus for a multiple 

VCA system; the information from VCA is critical. Given the VCA we can simply take 

the reactive reserve basin as the total reactive source and perform prediction in that VCA. 

In effect the system has been reduced to a unit of closely coupled system with respect to 

reactive power exchange. The result is conservative because the bus under consideration 

could be sensitive to other generators which are not a part of the reactive reserve basin.  

For a system with multiple load increase the participation factors become very 

useful. The generators are a part of more than one VCA with different sensitivities. 

Consequently, the exact amount of reactive power absorbed by a load bus cannot be 

quantified. The approximation is done by proportionality as in equation 4.11. Once this is 

done, the problem reduces to single VCA multiple load change. With this reduction, steps 

in section 4.3.2 and 4.3.3 can be undertaken for final margin estimation for the given bus. 

 

4.4 Online Implementation of the Method 

 

Schlueter [36] has indicated that VCAs are fixed. They do not change even when severe 

contingencies and operating changes occur. It is however apparent that line outages 

should change the VCA. The idea was tested on the IEEE 30 bus system by calculating 
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VCA following a contingency. It was found that the VCAs did change with respect to 

most contingencies. However, buses 25, 26, 27, 29 and 30 were part of the same VCA 

and the reactive reserve allocation to them did not change a lot. The plot for bus 26 of 

reactive power allocation with respect to contingencies is shown in Figure 4.9. The 

reactive reserve allocation is almost constant throughout the process which implies that 

VCAs are quite robust. The argument made by Schlueter [36] and the obtained result can 

be explained as follows: 

It is not entirely correct that VCAs do not change with contingencies. However 

reactive power transfer is a local problem and the contingencies will influence only the 

local buses. Consequently, for every contingency there is no need to trace QV curve for 

all the buses. Only the buses closely affected by the contingency can be considered. One 

simple way would be to check the sensitivities of generator reactive power to the line that 

was out. The reactive reserve basin then needs to be calculated for only those buses 

which lie in the VCAs associated with the generator. This will drastically reduce the 

number of buses for VCA determination and make the process compatible to online 

implementation.  Sensitivity based method [37] would further accelerate the process. 

Further investigation is needed to find out the exact computational advantage. For the 

IEEE 30 bus system result, the system is small; therefore most of the contingencies affect 

the reactive power flow. The buses mentioned (25, 26, 27, 29, 30) have similar reactive 

reserve capacity because these buses are relatively electrically isolated from rest of the 

system. The variation of reactive power observed in Figure 4.9 is for the contingencies 

related to transformer outages and a few major lines, otherwise the VCA essentially 

remains the same.   
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Figure 4.9 Reactive reserve allocations for bus 26 vs. contingencies 

4.5 Results and Analysis 

 

The method was applied to two bus system to understand the effectiveness. 

Further, simulations were done on IEEE 5 and 9 bus systems to cover all the scenarios 

mentioned. The IEEE 9 bus system is an example of a large system as it has multiple 

VCAs. Finally the result for the IEEE 30 and IEEE 118 bus system has been presented. In 

all cases, error was calculated using equation 4.12. 

 

4.12 

 

Simulation was done by customizing routines in Matpower package [55]. The 

power system data also corresponds to the data file available in the Matpower package. 

The steps in simulations can be explained as follows. Given a bus, at least three 

observations were taken by varying the load (single increase or multiple increases). Using 

these values to estimate the coefficients of the quadratic equation Smnrrpqo was predicted. 

The reactive reserve for each bus was calculated from offline simulations. Finally, 
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maximum power for a given scenario was predicted using the above formulation. For 

every error plot the horizontal axis represents the loading increase at a particular bus in 

p.u. and the vertical axis represents the prediction error at the corresponding operating 

condition for the same bus. 

Figure 4.10 is the error plot for the two bus system using Thévenin equivalent 

method.  Figure 4.11 is the error plot using the proposed method. The error in prediction 

due to Thévenin equivalent method is -156% as opposed to maximum error of 6.5% 

given by the proposed method for the same system. The negative sign denotes, over 

prediction of the maximum loading point.  

 
 

Figure 4.10 Error for the two bus system using Thévenin Equivalent method 
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Figure 4.11 Error for the two bus system using the proposed method 

The sources of error are the inaccuracies of SZnZbm and Smnrrpqo . Since this is a 

small system (two buses) SZnZbmis the maximum reactive capacity of generator. The error 

seen is thus due to error in prediction of reactive power loss. The initial error can be 

attributed to the fact that we have very few measurements to work with. Once we have 

sufficient number of points, the prediction of Smnrrpqo becomes accurate. The IEEE 5 and 

9 bus systems have multiple buses with multiple loads, hence there is a flexibility to 

predict with single and multiple load changes. In both the cases the accuracies due to the 

new method is very good (Table 4.2).   

Figure 4.12 is the one line diagram of IEEE 30 bus system. It has 6 generators, 42 

lines, a base load of 272.4 MW and 107.80 MVAR and a maximum loading of 490 MWs. 

The VCAs have been outlined in Figure 4.12 and presented in Table 4.1 with 

corresponding reactive reserve basins and participation factors. The results are much 

more accurate than predicted by Thévenin like methods. Bus 3 has been chosen for 
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observation. Error plots can be seen in Figures 4.13 and 4.14. Next, as a test of the 

method for a larger system IEEE 118 bus system was used. There are 186 branches, 54 

generators with 29 VCAs and the base load observed was 4242 MW and 1438 MVAR 

with final loading of 6363 MWs. The prediction was done for bus 21 and the error plots 

can be observed in Figures 4.15 and 4.16 respectively for the two scenarios. 
 

 
 

 
Table 4.1 VCAs and RRBs with PFs for IEEE 30 bus system 

VCA_ID Buses in VCA RRBs 

(Generators) 

PFs 

 

1 3,4,6,9,10,12,28 1,2,5,8,11,13 0.53,0.28,0.53,0.19,0.42,0.21 

2 7 1,2,5,8,13 0.47,0.24,0.47,0.17,0.18 

3 14,18,19,20,23,24 8,13 0.23,0.25 

4 15,16 2,8,13 0.10,0.07,0.07 

5 17,21,22 2,8,11,13 0.38,0.27,0.58,0.29 

6 25,26,27,29,30 8 0.07 
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Figure 4.12 IEEE 30 bus system 
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Figure 4.13 Error for IEEE 30 bus system at bus 3, single bus load increase 

 

Figure 4.14 Error for IEEE 30 bus system at bus 3, multiple load increase 
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Figure 4.15 Error for IEEE 118 bus system at bus 21, single bus load increase 

  
Figure 4.16 Error for IEEE 118 bus system at bus 21, multiple bus load increase 
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Comparative results between the Thévenin method and the proposed method have 

been tabulated in Table 4.2. It compares error between Thévenin method and the 

proposed method for different test systems and loading scenarios. Multiple indicates 

multiple load increase while single indicates single load increase. One of the main 

observations to be made from the table is the error offset in the Thévenin equivalent 

method. The error is not sensitive to closeness to instability. On the other hand, the 

proposed method causes the error to decrease towards instability and confine it to a very 

narrow range.  
 

Table 4.2 Error comparison 

Test 

System 

Error Recorded (%) 

Thévenin Equivalent Proposed Method 

Multiple Single Multiple Single 

2 bus - -156.8 to -156.8 - 7 to -2 

5 bus -270 to -120 -55 to -30 23 to -5 18 to 1 

9 bus -50 to -42 -30 to -15 27 to 2 13 to -1 

30 bus -250 to -100 -60 to -20 25 to 2 30 to -5 

118 bus -300 to -150 -100 to -50 4 to -1 28 to -3 
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4.6 Conclusion 

 

The consideration of available reactive reserves in computation of voltage 

stability margin has proven to be very accurate and reliable compared to the Thévenin 

Equivalent method. The error rate as we approach the loadability limit falls 

exponentially. The reactive limits of generation or contingencies such as outage of a line 

influence the reactive loss of a line; however the effect is more benign as compared to 

Thévenin equivalent. An index calculated from this method would therefore be more 

reliable.  The implementation of VCA determination in the online scenario as explained 

is feasible. Future work is recommended on techniques to quickly determine the VCA. 

The proposed method can be extended to online voltage security assessment by 

considering a set of credible contingencies and by monitoring the smallest margin at any 

given time. 
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5 ATTRIBUTE SELECTION FOR ONLINE VOLTAGE 

STABILITY MONITORING USING DECISION TREES 

 

5.1 Overview 

 

With available wide area measurement system [8], the power system is 

overflowed with data. Given the accuracy and speed of measurement the setup has been 

envisaged to be useful in state estimation, feedback control systems, adaptive relaying 

and security monitoring. The data so obtained is also identified to be a potential source of 

information for applications such as tracing of system behavior prior and post system 

wide events, parameter updating for power system models and prediction of angular 

instability and voltage instability. In this chapter, efficient model development for voltage 

stability monitoring is discussed and a method proposed. These applications are suitable 

for online applications because the time consuming calculations are done offline and the 

decision results are almost instantaneous. 

The extraction of implicit, previously unknown, and potentially useful 

information from data is known as data mining [56].  Although, modern power system 

has staggeringly high volume of data, the need for data mining applications in power 

systems can be traced quite far back. The first attempt to apply statistical pattern 

recognition (PR) to power system security was done by Dy Liacco in the late sixties [57].   

The voltage stability monitoring problem is a classification problem. Over the 

years, commonly used classification algorithms for voltage stability monitoring are 

artificial neural networks (ANN) [14, 15] and decision trees [11-13]. The advantage of 

DTs over ANN is that DTs produce easily understood structural descriptions [58]. In 

other words DTs are transparent methods while ANNs are black box. The usefulness as a 

result becomes twofold: firstly, we get the classification result and secondly the system 
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knowledge. For example, by knowing attribute for splitting in a decision tree we can 

monitor a region associated with that attribute for stability and control functions. 

 

5.2 Motivation 

 

 There are numerous studies in implementation of DTs for power system voltage 

stability monitoring [11-13]. Cutsem et al [11] developed a systematic way to adapt DTs 

for voltage security monitoring. The importance of candidate attributes has been 

highlighted but the pre-selection of such attributes has been left to human expertise. 

Similarly, Nuqui et al [12], proposed a methodology on implementation of DTs for online 

voltage security monitoring using phasor measurements. The authors propose a new 

candidate location for an additional PMU so that the overall accuracy of the system is 

enhanced. This sums up to finding the best attribute for formation of DTs. The problem is 

solved by considering every other bus to be the candidate location at a time and checking 

the accuracy of prediction. If this problem was extended to more number of candidate 

locations then the computational time would rise exponentially. Apparently, we need to 

look for systematic way to handle the issue. Another study by Vittal et al [13] has 

similarities on the problem formulation, but presents many variations of use of 

measurements for voltage stability monitoring. For example, angle differences, reactive 

power flow in lines, current in lines, voltage drops in lines, square of bus voltages, etc 

have been used as attributes. The elements chosen are appropriate as voltage stability has 

relationship to such parameters. However, we should have a systematic method to choose 

the parameters rather than trying out combinations on hit and trial basis. The solution to 

this is to select attributes beforehand following a systematic procedure.  This chapter 

deals with developing systematic procedure for attribute selection in decision tree 

application. One of the challenges in data mining applications is scalability (the size of 
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the data). There are two ways to deal with this issue. One approach is to develop a more 

scalable algorithm which is able to handle a large amount of data. Other approach is to 

engineer the data. Engineering means making the data more compact by eliminating 

redundancy and insignificant portions using an intelligent technique. [56, 58] 

The work in this chapter is focused on improving the data. Specifically, an 

attribute selection method is proposed. To put things in perspective the following 

example can be considered.  A typical measurement vector of power system is voltage 

and angle at all buses, real power generation, reactive power generation, real power 

demand and reactive power demand. With these assumptions, for a four bus system with 

2 generators the data vector will have 8 (voltage and angles at each bus) +4 (real and 

reactive power generation level at each generator) + 8 (real and reactive demands at each 

bus) = 20 elements. If the problem was to be extended to a real system where the system 

size is in the order of thousands of buses, the dimensionality (the length of the data 

vector) of the problem will be daunting. However, most of the data elements are 

redundant. For example the voltage and angles can be derived from power flow using the 

given generation and load demands. This observation reduces the data dimension to 8 

from 20. Secondly, the generator voltages are not sensitive as they are controlled, so they 

would not be useful either. Finally only four elements remain in the data. The number of 

attributes can be further reduced by following appropriate techniques. The previous DT 

implementations assumed a limited measurement vector from limited PMU locations. 

However, in the future observability of the entire system can be expected. In addition it 

might be necessary to identify PMU locations which can be identified by applying 

attribute selection procedure. There are standard data mining techniques for attribute 

selection. However, no single method of attribute selection is the best and sufficient. 

Every method has its own bias. For reliable the outputs of different independent methods 

have to be considered. This exercise may not necessarily give ‘the global best’ set of 
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attributes but it will definitely produce better attributes and more general rules. The focus 

of this work is to see if attributes can be selected based on power system knowledge and 

the accuracy maintained. The method applied is tangent vector sensitivity [16] of 

attributes. The significance of this exercise can be listed as follows: 

• Reduce the dimensionality of the problem. This saves a lot of offline 

computation time and resources and also increases the speed of online 

implementation. 

• Using a power system approach to select attributes complements the data 

mining approaches and makes the results more robust and reliable. 

• By limiting ourselves to as little attribute as possible, it will be easy to 

track them for stability information.  

• The information will also be useful in planning. For example future 

locations for PMUs can be identified. 

 

5.3 Decision Tree  

 

Decision tree is a data representation technique [58]. It consists of nodes and 

branches. Nodes are the points in a tree where a test is done on the attribute; branches are 

outcomes of the test that lead to another node. There are three kinds of nodes: root node, 

internal node, leaf node. Root node is the topmost node, internal nodes are in-between 

nodes and the leaf node is the end node. The completion of a test is decided by the purity 

of a node. If a node attains a certain predefined level of class purity then the node is 

terminated. In order to classify an unknown sample, the attribute values of the sample are 

tested against the decision tree. A path is traced from the root to a leaf node that holds the 

class prediction for that sample. The structure and working of a decision tree can be 

explained using an example. The data, Table 5.1, is the weather nominal data which is 
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available in Waikato Environment for Knowledge Analysis (WEKA) [59] and 

corresponding decision tree is shown in Figure 5.1. WEKA is open source machine 

learning software that has been used for testing the data for attributes on different 

algorithms in this work. 

 

 
Table 5.1 Weather data 

 
Outlook Temperature Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot High True No 

Overcast Hot High False Yes 

Rainy Mild High False Yes 

Rainy Cool Normal False Yes 

Rainy Cool Normal True No 
Overcast Cool Normal True Yes 

Sunny Mild High False No 

Sunny Cool Normal False Yes 

Rainy Mild Normal False Yes 

Sunny Mild Normal True Yes 

Overcast Hot High True Yes 

Overcast Hot Normal False Yes 

Rainy Mild High True No 
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Figure 5.1 Decision tree generated by WEKA for the data given in Table 5.1 

The objective of data in Table 5.1 is to decide whether a given day is suitable for 

playing. Hence, ‘play’ is the class attribute that needs to be predicted. The values that the 

attribute ‘play’ takes are the class values. In this problem there are two classes to predict, 

viz. ‘yes’ or ‘no’. All the elements of the first row are the attributes and the values they 

take listed along the columns are called instances. Since we have discrete instances the 

attributes are called nominal. If the attributes are continuous set of numbers they are 

called numeric attributes.  

Figure 5.1 is the decision tree output obtained from WEKA. As per the previous 

definitions, ‘outlook’ is the root node; ‘humidity’ and ‘windy’ are the internal nodes and 
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the decision nodes are the leaf nodes which contain the classes. It is seen that the leaf 

nodes have single attribute values such as ‘yes’ or ‘no’. During the formation of decision 

tree, an attribute for a node is decided based on its ability to reduce the impurity of the 

division that it produces on a dataset. The algorithm [58] used to build the decision tree in 

Figure 5.1 measures the impurity reduction by calculating entropy and expected 

information which has been explained in the following section. 

 

5.3.1 Decision Tree Building 

 

The basic task in building a DT is to find an attribute to be tested on a node and 

branching to another node repeatedly. The process of finding an attribute for a test and 

branching is called splitting. The objective of a split in a tree is to reduce the impurity in 

the dataset with respect to class in the next stage. [58]This can be accomplished by 

information gain measure. The calculation is done in two stages. First the entropy of the 

dataset is measured and using this value expected information gain is calculated. The 

entropy of a dataset is given by expression 5.1. 
 

 

5.1 

 

Where, 

c= number of classes 

S= training data (instances) 

p= proportion of S classified as i 

In the second stage, expected information gain is calculated which is given by expression 

5.2. 

 

MQ�aV����� � � 4�8�VgC��8�T
8�:  
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5.2 

 

Where, 

 

 

v= value of the attribute. 

Gain(S,a) is the expected information gain obtained from the knowledge of attribute ‘a’. 

For the dataset in Table 5, using equation 5.1, 

MQ�aV����� � � 4�8�VgC��8�T
8�:  

 
 
                     

 

Similarly for instances of the attribute ‘outlook’ the entropies are as follows: 

 

 

 

 

 

 

 

Now the expected information gain is calculated using equation 5.2. 
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� 0.94 4 0.69 � 0.23 
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Similarly computation of expected information gain of other attributes yields, 
 
 
 
 
 
 
 
 
 
 

The expected information gain is the highest by choosing the attribute ‘outlook’ 

which is 0.23, so it is chosen as the root node as seen in Figure 5.1. The attribute outlook 

has 3 instances; hence the three branches. The next step is to find the attribute for the next 

node after branching. Consider the branch ‘sunny’. The dataset is now confined to all the 

instances which have ‘outlook’ to be ‘sunny’. The total number of instances in the dataset 

reduces to 5. Within these 5 data points, the attribute ‘outlook’ is not considered. The 

entropy and expected information gain is calculated for rest of the attributes. 

Thus, 

MQ�aV����� � � 4�8�VgC��8�T
8�:  

 
 
 
 
For the attribute temperature entropy for its instances, 
 
 
 
 
 
 
 
 
 
 
 

�APQ��, �G@�� � 0.03 
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� 4 25 �VgC 25 4 35 �VgC 35 � 0.97 
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The temperature information gain: 
 
 
 
 
 
 
 
 
 
 
Similarly, 
 
 
 
 
 
 
 

Finally, the information gain is highest for the attribute, ‘humidity’ along the 

branch ‘sunny’. As a result it becomes the second node. By repeating the calculations for 

other branches and nodes the entire tree is induced. 

 

5.3.2 Issues with the Tree 

 

The kind of approach pursued in developing the above tree is the greedy search. 

That is because the decision is based on what is best now and future nodes are not being 

considered. Genetic algorithms [43] help in searching for the global optimum subset.  

In Figure 5.1 the decision tree correctly classifies every instance. Although this 

seems to be a good solution for the training dataset, the classifier may not do well with 

other datasets. This is a case of over fitting [58]. Over fitting makes the tree large and 

complex (hence requires a lot of computation time) and will not be able to generalize the 

rules (the model will not produce good results for an independent test set). Over fitting 

becomes a nuisance when the data is contaminated by noise and outliers. A solution to 

�APQ��, �G@�� � MQ�aV����� 4 � |�(||�| MQ�aV����(�(�(bm�pr�b�  

� 0.97 4 25 . 0 4 25 . 1 4 15 . 0 � 0.57 

 

�APQ��, he@P!P��� � 0.97 
 

�APQ��, fPQ!�� � 0.02 
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this problem is to prune a tree. Operations such as pre-pruning and post-pruning are done 

to reduce the over fitting effects. To neutralize overfitting, testing should be done using 

holdout procedures for limited data or by using an independent test set as far as 

applicable. 

. The real world applications have large amounts of data to be handled; hence 

scalability becomes another prime issue. The strategy is to either increase resources for 

computation or adapting algorithms with better scalability features. Yet another strategy 

is to reduce the data. Data reduction can be accomplished by data compression, 

numerosity reduction and dimensionality reduction. The data compression is the process 

of transformation of data to a reduced or “compressed” representation of the original 

data. The numerosity reduction finds a smaller form of data representation. These 

methods are independent of the system under study.  

The third form of data reduction is the dimensionality reduction. This is the 

process of eliminating the attributes that are not significant for decision tree modeling. 

Generic mathematical means can be used to filter the attributes but at the same time 

system information can be also useful. In other words, for attribute selection in power 

system, knowing the nature of the variables can be of significance. In this thesis, the 

filtering of attributes is done using data mining algorithms as well as knowledge from 

power system studies. The study is focused on applicability of power system knowledge 

for attribute selection.  

 

5.4 Methods of Attribute Selection 

 

There are a large number of attribute selection methods [56, 58]. WEKA, for 

example has 12 algorithms for the purpose. The outcome of the algorithms may not 

necessarily be the same. An attribute may be qualified as good by some method while 



www.manaraa.com

67 
 

some other method may give it a very small weight. In such a case, it is necessary to have 

a combined evaluation of different methods so that in effect the bias of the attribute 

selection algorithm is nullified. For this reason we want to select attributes using methods 

that have different discriminating philosophy. In accordance with this line of thought the 

following attribute selection methods were chosen from WEKA. 

 

• Gain ratio attribute evaluation 

• Relief attribute evaluation 

• Wrapper subset evaluation using Naïve Bayes learner 

 

5.4.1 Gain Ratio Attribute Evaluation 

 

The information gain of an attribute is given by equation 5.2. This relation biases 

towards higher number of branching. For example, if there was an extra attribute ‘id 

code’ as shown in Table 5.2, this attribute would have the highest information gain and it 

would be chosen as the root node [58]. With all its branches, all the instances would be 

perfectly classified, even if all other attributes were ignored. The final outcome would be 

a tree without any system information. To avoid this situation, attributes are selected 

according to their information gain ratio. Information gain ratio is given by equation 5.3. 

 

 

 

5.3 

 

The denominator takes into account just the number and sizes of the daughter 

nodes without taking into account the information of the class. With this new 

�APQ aA�PV � PQ�Va@A�PVQ gAPQPQ�Va@A�PVQ UVQOP!GaPQg !Aegh�Ga QV!GO  
 

� MQ�aV����� 4 ∑ |�(||�| MQ�aV����(�(�(bm�pr�b�MQ�aV�� ��(:, �(C … �(E�  
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formulation, considering the data in Table 5.2, information gain for the ‘id code’ attribute 

is 0.94 while the information gain ratio=0.246. For the attribute ‘outlook’, information 

gain=0.247 while the information gain ratio=0.156. Although the hypothetical attribute 

‘id code’ is still preferred, the bias is greatly reduced. The information gain ratio 

technique ignores attributes having high amount of intrinsic information. To compensate 

for this, there is a practice of choosing an attribute such that the information gain of that 

attribute is at least as great as the average information gain for all the attributes. 

 

Table 5.2 Weather data with the ID code attribute 

 
ID code Outlook Temperature Humidity  Windy Play 

a Sunny Hot High False No 

b Sunny Hot High True No 

c Overcast Hot High False Yes 

d Rainy Mild High False Yes 

e Rainy Cool Normal False Yes 

f Rainy Cool Normal True No 

g Overcast Cool Normal True Yes 

h Sunny Mild High False No 

i Sunny Cool Normal False Yes 

j Rainy Mild Normal False Yes 

k Sunny Mild Normal True Yes 

l Overcast Hot High True Yes 

m Overcast Hot Normal False Yes 
n Rainy Mild High True No 
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5.4.2 Relief Attribute Evaluation 

 

The relief algorithm evaluates the worth of an attribute by repeatedly sampling an 

instance and considering the value of the given attribute for the nearest instance of the 

same and different class (WEKA help). This is an instance based learning approach; 

specifically the k-nearest neighbor algorithm is tailored to calculate the weight of an 

attribute. One simple version of the mechanics of the algorithm can be explained as 

follows [58]. 

Once the training instance is classified, the most similar exemplar or the most 

similar exemplar of each class (exemplar is a representative instance of a class) is used as 

the basis for updating. Let x be the training instance and y the exemplar. For every 

attribute ‘i’, the difference |�8 4 �8| is a measure of the contribution of that attribute to 

the decision. Smaller difference means, the attribute contributes positively where as for a 

larger distance the attribute contributes negatively. Given the situation, if the 

classification is correct, the attributes with smaller difference turn out to be important and 

hence its weight is increased. On the other hand if the classification is incorrect, the 

weight is decreased. The selection approach is different here from the information gain 

ratio method as relief attribute evaluation deals with a portion of data rather than the 

whole data. The number of exemplars used can be more than one (k). 

 

5.4.3 Wrapper Subset Evaluation Using Naïve Bayes Learner 

 

The previous algorithms rank the attributes by a greedy approach. The 

combination of attributes is not considered. For a selection of ‘n’ attributes, the 

combination of top ranked attributes may not necessarily give the best outcome. In order 

to have a better selection of attributes in a collective sense this approach is followed. The 
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number of attributes to form a subset is decided and the model is induced using a learning 

algorithm on the subset. The resulting model is then evaluated. Once sufficient subsets 

have been tested, the subset with the best results gives the list of selected attributes. 

Exhaustively trying all the possible combinations can be computationally burdensome, 

hence search algorithm such as genetic algorithms are used to get the optimum subset. 

Naïve Bayes is chosen as the learning algorithm as it is different from the above two 

methods. The method is based on probability theory and has the assumptions of the 

attributes being class conditional independent. Hence dependent attributes are filtered 

out. The Naïve Bayes algorithm works as follows: 

• Consider a data sample having ‘n’ attributes and ‘m’ classes. Given an 

unknown data sample, X, the class prediction is based on highest posterior 

probability conditioned on X. The sample X is assigned to class Ci if and 

only if 

 

• We need to maximize the posterior probability to get the class. The 

posterior probability can be calculated using the Bayes theorem as in 

equation 5.4: 

5.4 

 

In equation 5.4, the denominator is constant for all classes, while L��8� 

can be easily calculated. For the term L�N/�8�, to reduce the computations 

the naïve assumption here is that the attributes are class conditional 

independent. Thus L�N/�8� can simply be calculated using equation 5.5: 
 

5.5 

 

Now, L��3|�8� can be estimated from the training samples. 

L��8|N� � L���iN� �Va 1 � Y � @ , Y � P 
 

L��8|N� � L�N/�8�L�N� L��8� 

L�N/�8� � � L��3|�8�q
3�:  
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5.5 Power System Point of View of the Attributes 

 

The data mining techniques for attribute selection that have been explained in the 

previous sections are pretty standard. The idea of this thesis is also to use power system 

knowledge for the selection of attributes. The attributes are selected using values in the 

tangent vector. The method is based on the hypotheses that attributes sensitive towards 

system scenarios are the critical attributes for classification. This is reasonable because, if 

an attribute does not change it is most unlikely that it will discriminate system conditions. 

For example, voltage of a voltage controlled bus is a bad attribute as it hardly changes, 

while voltage and angles of electrically distant buses (weak ones) from the reactive and 

real power source change and those values may be good for predicting classification.  

The general procedure of sensitivity analysis is to define a stability index and 

study its variation with power system parameters such as voltage, angles, loads, 

contingencies and others [16]. Modal analysis [5] is an example of such type of measure. 

A voltage stability index based on minimum eigenvalue of the load flow Jacobian is 

defined. In the second step, sensitivities of different power flow elements such as buses, 

lines, generators to that eigenvalue (or a mode) is calculated in the form of participation 

factor. 

In a second method, the sensitivities of power system parameters such as voltage, 

angles are directly calculated with respect to power system loading.  This sensitivity is 

called parametric sensitivity. The information can be used for stability analysis because 

voltage and angles tend to have high value of sensitivity when the bus associated with 

them is in the course of collapse. This can be observed in PV diagram (Figure 2.2) where 

the slope of the PV curve is higher towards the collapse point. In general, when the 

sensitivity of a parameter towards power system loading is high, it implies that the 
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parameter is associated with the weaker part of the network and requires corrective 

actions.  

Parametric sensitivity is more suited for attribute selection. This is because the 

value of the sensitivity suffices in ranking the attributes without any additional 

computation for stability index. The sensitivity information is obtained from tangent 

vector [16]. More details on tangent vector evaluation are given in section 5.8. The 

tangent vector elements are differential changes in bus voltage angles ( !"8) and 

magnitudes (!.8� with respect to differential change in loading (!��. Hence the tangent 

vector elements serve as the voltage and angle sensitivity with respect to loading. These 

parameters are the attributes of the decision tree model.  

 

5.6 Decision Tree Implementation in Voltage Stability Monitoring 

 

Figure 5.2 gives a general picture of the real time application of decision tree in 

voltage stability monitoring. Once the credible contingencies, operating conditions and 

scenarios are known, the next step is to generate a data base. The database is used to 

build a decision tree model. The tree, on real time will give the stability information 

when fed by a measurement vector.  
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Figure 5.2 Implementation of decision tree in voltage stability monitoring of power 
system 
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5.7 Data Generation 

 

Ideally, the results would be of more significance if the data was from direct field 

measurements. It is highly possible that, the data obtained from simulated environment 

lack the exact representation of system state and may be biased with respect to 

assumption of load variations and scenarios. Engineering judgment is useful in such a 

case. The advantage of having simulated data is in getting a great variety of data within a 

very short span of time. Possibly, getting the real life data with as much variety would 

require years of data collection. 

Data is required to train and test the decision tree model. Training set is used to 

make classification rules. Test set is used to check accuracy of the model. Depending 

upon the availability of data, there are various holdout procedures as cross validation, 

leave one out and bootstrap to use for model validity [58]. In this study an independent 

test set has been used.  

In order to know the system conditions to vary in generating the data, it is 

essential to know the parameters that impact voltage instability or the voltage stability 

margin. Following parameters are seen to vary voltage stability margin [2]: 

•  Load increasing scenario 

• Generation dispatch 

• Contingencies 

The influence of above variations on voltage stability margin is demonstrated by 

PV curves of Figures 5.3a and5.3 b.  Figure 5.3a demonstrates the voltage stability 

margin variation with different scenarios (defined by contingencies and load increments). 

Figure 5.3b has varying base points (defined by different load allocations and generation 

dispatch) but the same scenario, yet margins differ. 
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Figure 5.3a Change of voltage stability margin with respect to different scenarios 

 
 

Figure 5.3b Variation of voltage stability margin with variation of base points 

While generating data load increase scenario is realized by randomizing the base 

loading and increasing the load in their corresponding proportion. The generation 

dispatch variation is performed by randomizing the generation. All line outages are 
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considered as credible contingencies. While increasing the load, the generation is 

proportionally divided among the generators according to their base generation so that the 

slack generator doesn’t have to bear the entire load increment, which otherwise would be 

unrealistic. 

 

5.7.1 Voltage Stability Criteria 

 

There is not a universal approach to voltage security classification [12]. 

Commonly followed approaches seek for minimum or maximum threshold for voltage 

magnitude at different buses and possibly different specific values for buses identified as 

important ones. Further, an operating point is defined as ‘secure’ based upon the 

available real power margin. Real power margin is simply additional real power that can 

be loaded to the system before collapse. This is defined in percentage of the peak load. 

For example minimum voltage should be greater than 0.92 p.u. and margin to voltage 

collapse of 12.5 % for a stable case [12]. 

 In this study, an operating condition is assumed to have three classifications: 

secure, alert and insecure. The percentage of margin considered for this test is as follows: 

if the system is within 10% then the system is considered insecure, if the margin is 

between 10-20 % the system is said to be in alert stage while margin > 20% means a 

secure state. The buffer zone of alert stage gives the operator, time to decide on control 

actions in case the system is to enter the insecure state. The criterion is illustrated by 

Figure 5.4.The secure state is a green light for the operator, insecure is the red light and 

the alert state is the orange light. In order to find the outcome of an operating condition 

for a given scenario, the test system is stressed accordingly until the end point. Once the 

outcome is known, the data vector is stored in an .xls file. This data vector consists of 

voltages and angles of all the buses and the classification value: secure, insecure or alert 
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state. The next phase is to input the data in WEKA for further analysis which will be 

covered in the results and analysis section. 

 

 

 

 

 
 

Figure 5.4 Security criteria 
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5.7.2 Test System 

 

The test system used for data generation is IEEE 30 bus system (Figure 4.15). The 

system data is available in Matpower package that runs in Matlab, which are open source 

codes. Sampling for random numbers is done using a normal distribution using the 

Matlab function ‘random’. To be specific with the experiment performed here: There are 

6 random generator dispatches, 5 random loading conditions and 38 contingences. The 

base case loading is 272 MW and the peak loading is of 490 MW implies approximately 

50 MW as 10% of the peak load. This number could vary for contingent conditions- most 

likely a smaller value. For unsolvable cases obtaining the nose point becomes an iterative 

process. To reduce the computation, the loading was reduced by 35 MWs flatly in all 

cases as a representation of the insecure state, 70 MW for the alert case and margins of 

150 MW considered the secure state. Using the MWs instead of percentage randomizes 

the portion of the PV curve from which the sampling is done within the percentage limits. 

If a constant percentage is taken as the margin then there is a possibility that we sample 

around the same section of the PV curve. For each scenario, 3 observations are taken to 

represent the three classes. Thus we have approximately 6×5×38×3 =3420 data points. 

Out of which nearly 1000 points are taken as a test set and the rest is used for training the 

decision tree. 

Figure 5.5 is the flow chart for data generation process. A part of the data is 

available in Appendix A. 
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Figure 5.5 Data generation for decision tree modeling  
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The correct size of the dataset is a very important aspect in DT induction. DTs, 

for a smaller dataset can be prone to instability resulting in trees with varying structure 

and accuracy for slight perturbation [60]. The perturbation could be in the form of change 

in attribute values or in the number of instances. In order to test the stability of DT in the 

learning set, the data was divided into 10 folds. Only 9 folds were taken at a time to 

induce a DT. The generated DT was tested against an independent dataset. This is the 10 

fold cross validation technique [58].The outcome is presented in Table 5.3. The accuracy 

ranges from 95% to 98% while the size of the tree varies very slightly as shown. The 

results imply that size of the dataset considered is sufficient in terms of stability of DT 

induction.  

 
Table 5.3 Stability evaluation of DT for the generated dataset  

Fold Removed Size of the Tree  

(number of nodes) 

Accuracy (%) 

1 170 96.0 

2 178 96.8 

3 178 96.8 

4 178 96.9 

5 185 97.6 

6 178 96.8 

7 175 96.8 

8 182 95.0 

9 175 97.6 

10 180 97.8 

none 177 97.6 
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5.8 Tangent Vector Calculation 

 

The method for tangent vector calculation is l explained in Chapter 2 (section 

2.2.1.1). The tangent vector gives the sensitivity of the parameters at a point in the PV 

curve where they are evaluated. Since we want to classify a given operating state as 

secure, alert or insecure, the attributes should be such that they predict each of these 

categories accurately. Hence sensitivities in the entire region of the PV curve should be 

evaluated. Here, the samples were taken within 10%, 10 to 20% and >20% of the PV 

curve from the end point. The tangent vector was calculated for every credible 

contingency (here the line outages). Since the angle and voltage sensitivities are not 

comparable, they have been ranked separately and 50% of each category is input in the 

final set. For example to select 20 attributes, top 10 attributes come from angle 

sensitivities and the rest from the voltage sensitivities. Because the tangent vector 

elements are negative and sensitivity is considered to be based on magnitude, normalized 

magnitude of sensitivities is taken for comparison [16]. Figures 5.6 and 5.7 are the bar 

plots of the actual values of the top three attributes from the angles and voltages 

respectively for different operating conditions for various contingencies. The 

corresponding sensitivity values are tabulated in Tables 5.4 and 5.5 respectively. It is 

seen (Figure 5.6- sensitivities for conditions 2, 3, 4) that sensitivities are different for 

different operating conditions. This indicates the nonlinearity of the PV curve. Even with 

this non linearity the general trend of the sensitivity was such that the relative ranking of 

the attributes remained the same irrespective of system conditions. This is consistent with 

the results obtained in [16] for the 39 bus system. The sensitivities at lighter loads were 

found to be smaller compared to the stressed conditions. The peaked bars (having higher 

values) in Figures 5.7 and 5.8 are for the stressed conditions. The tangent vectors were 
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evaluated for IEEE 118 bus system. The sensitivity trend was found to be similar to the 

one observed for IEEE 30 bus system.  

 
Figure 5.6 Part of angle sensitivities for buses 18, 19 and 20 (top three angle attributes) 

 
 

Figure 5.7 Part of voltage sensitivities for buses 24, 19, 26 (top three voltage attributes) 
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Table 5.4 List of angle sensitivities for plot of Figure 5.7  

 

Some 

System 

Condition 

Angle Sensitivities (in the order of 

top ranks, actual values) 

Corresponding sensitivities 

(normalized values) 

A19 A18 A20 A19 A18 A20 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
 

0.3302 0.3267 0.3256 

0.2497 0.2472 0.2464 

0.3853 0.3806 0.3799 

0.3297 0.326 0.3252 

0.2495 0.2469 0.2462 

0.3852 0.3806 0.3797 

0.3296 0.3259 0.3251 

0.2494 0.2469 0.2462 

0.4003 0.3944 0.3948 

0.339 0.3345 0.3345 

0.2537 0.2507 0.2505 

0.3851 0.3815 0.3792 

0.3295 0.3265 0.3247 

0.2494 0.2472 0.2459 

0.3851 0.381 0.3794 

0.3296 0.3263 0.3249 

0.2495 0.2471 0.2461 

0.3941 0.391 0.3875 

0.3356 0.3329 0.3303 

0.2525 0.2505 0.2488 
 

1 0.9894 0.9861 

1 0.9901 0.9867 

1 0.9879 0.986 

1 0.9887 0.9864 

1 0.9896 0.9869 

1 0.9882 0.9858 

1 0.9888 0.9863 

1 0.9897 0.9868 

1 0.9852 0.9863 

1 0.9866 0.9867 

1 0.9883 0.9872 

1 0.9907 0.9846 

1 0.9909 0.9853 

1 0.9911 0.9861 

1 0.9895 0.9852 

1 0.9899 0.9857 

1 0.9905 0.9864 

1 0.9921 0.9832 

1 0.992 0.9842 

1 0.992 0.9854 
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 Table 5.5 List of voltage sensitivities for plot of Figure 5.8  
 

Some 

System 

Condition 

Voltage Sensitivities (in the order of 

top ranks, actual values) 

Corresponding sensitivities 

(normalized values) 

V24 V19 V26 V24 V19 V26 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
 

0.0761 0.0729 0.0715 

0.0558 0.0535 0.0523 

0.0924 0.0884 0.087 

0.0772 0.0739 0.0726 

0.0565 0.0541 0.0529 

0.0926 0.0886 0.0869 

0.0773 0.074 0.0725 

0.0565 0.0541 0.0528 

0.1087 0.1049 0.0996 

0.0875 0.0843 0.0805 

0.0612 0.0588 0.0566 

0.0929 0.089 0.0874 

0.0775 0.0743 0.0728 

0.0566 0.0543 0.0531 

0.0914 0.0878 0.0858 

0.0765 0.0735 0.0717 

0.0561 0.0539 0.0524 

0.0962 0.0932 0.0896 

0.0796 0.077 0.0742 

0.0576 0.0556 0.0537 
 

1 0.9582 0.9389 

1 0.9587 0.9363 

1 0.9565 0.9416 

1 0.9569 0.94 

1 0.9575 0.9375 

1 0.9577 0.9391 

1 0.9579 0.9379 

1 0.9583 0.936 

1 0.9651 0.9157 

1 0.9635 0.9199 

1 0.9616 0.9247 

1 0.9578 0.9408 

1 0.9581 0.9392 

1 0.9584 0.9368 

1 0.9605 0.9382 

1 0.9603 0.937 

1 0.9601 0.935 

1 0.9693 0.9314 

1 0.9672 0.9317 

1 0.9646 0.9316 
 

 

5.9 Results and Analysis 

 

In this section, attributes selected from different methods have been compiled and 

analyzed. The entire space of attributes consists of real and reactive power injections and 

voltage and angles at all buses. Only voltage and angles are considered for further 

processing. This is because voltages and angles are readily available from the phasor 

measurements. Interestingly, it was observed that using voltage and angles gave better 

results compared to real and reactive power injections. Further, real and reactive power 
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injections are dependent on angles and voltages. Consequently there is a little chance that 

information is lost. 

The data was inputted as .CSV (comma separated value) file to WEKA. Very 

minor data preprocessing such as discretization was done. This would relieve 

computational load in building the decision tree model. Table 5.6 gives the top 20 

attributes selected by different methods. The gain ratio, relief and tangent vector methods 

rank the attributes. The columns corresponding to those methods give the ranked list. The 

rank for angles and voltages apply separately for the tangent vector attribute selection. 

The column corresponding to the subset evaluation is not a ranked list. The alphabet ‘A’ 

stands for angle and ‘V’ stands for voltage. The numbers following them represent the 

bus number. Table 5.7 gives the accuracy obtained in the models built from different 

attribute selection procedure and the time taken for each model. It is seen that prediction 

accuracy from tangent vector selection procedure is highest among the different filters. 

The farthest column on the right is the accuracy of the model when all the attributes are 

selected. It has the highest accuracy, but not of appreciable incremental value. Time taken 

to build the model is 30ms compared to other methods which only take 20ms. The time 

factor can be very significant for periodic update of the models in the online paradigm for 

large interconnections where the number of buses in the network is in the order of 

thousands. 

The final selection of the 20 attributes was done based on their occurrences 

(repetitions/votes) and the ranks they held (in case of conflicts, since the pool has more 

than 20 attributes). The outcome is shown in Table 5.8. The first column is the pre-

selected attributes with more than one vote, the second column is their corresponding 

votes, the third column is the finally selected attributes and the fourth column is the 

accuracy obtained. The accuracy is the highest (98.14%) of all the cases considered until 

now (Table 5.7). This has been accomplished by a much smaller set of attributes (20) 
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versus considering all the attributes (53, the case that had the highest accuracy 

previously). This outcome is likely because when attributes are not filtered, the 

insignificant and redundant attribute, can gain importance deep down the tree. As a result, 

the tree tends to be less general and is likely to perform worse in an independent test set. 

As a further test on the selected attributes of Table 5.8, different subsets were 

considered for accuracy. In Table 5.9 first row consists of attributes with the highest 

number of votes. There are three such attributes. Next row has 3 votes for each attributes. 

The third row is the combination of the two. In the fourth row attributes with two votes 

were considered while the attributes in the fifth set are the ones that have been considered 

unimportant by the selection methods. It is found that, the seven attributes in the third 

row has as high accuracy as 97.8%. This accuracy is comparable to the one obtained from 

20 selected attributes. Thus there is a further reduction of the final set of significant 

attributes. The voting system as seen from Table 5.9 has worked well for the available 

data. The accuracy from attributes that were considered unimportant (Table 5.9, row 4) is 

82.06 %. This accuracy is low although more number of attributes has been considered. 

Thus, properly selected attributes improve the model accuracy rather than a large set of 

unfiltered attributes. 
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Table 5.6 Attributes selected by different methods 

 
       Method 
 
Rank 

Gain Ratio Relief Wrapper (Naïve Bayes) Tangent Vector 

1 V17 A8 V1 V24 
2 V15 A9 V11 V19 
3 V20 A11 V15 V26 
4 V16 A6 V18 V20 
5 V19 A7 V19 V18 
6 V14 A28 V24 V23 
 7 V18 A3 V26 V21 
8 V24 A4 V28 V22 
9 V25 A1 V29 V25 
10 V30 A2 A1 V17 
11 V22 V19 A2 A19 
12 V21 A16 A7 A18 
13 V29 A12 A8 A20 
 14 V23 V18 A9 A23 
15 V10 V14 A12 A21 
16 V12 A13 A17 A14 
17 V26 A17 A20 A15 
18 V27 V17 A22 A22 
19 A8 A14 - A24 
20 A6 V24 - A17 

 
 

Table 5.7 Accuracy from different set of attributes 

 
Attributes 
Selection 
method 

Gain 
Ratio 

Relief Wrapper Tangent 
vector 

All 
Attributes  

Accuracy 
(%), 
J48 

algorithm 
used 

 
 

96.7 

 
 

91.75 

 
 

96.39 

 
 

97.3 

 
 

97.63 

Time to 
build the 
model 
(ms) 

 
20 

 
20 

 
20 

 
20 

 
30 
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Table 5.8 Final attribute selection (top 20) 

 
Attributes  Occurrences/votes in sets 

obtained by selection 
algorithms 

Selected 
Ones 

(top 20) 

Accuracy (%) 

V14 2 V14  
 
 
 
 
 
 
 
 
 
 

98.14 

V15 2 V15 
V17 3 V17 
V18 4 V18 
V19 4 V19 
V20 2 V20 
V21 2 V21 
V22 2 V22 
V23 2 V23 
V24 4 V24 
V25 2 V25 
V26 3 V26 
V29 2 A1 
A1 2 A2 
A2 2 A9 
A6 2 A13 
A7 2 A16 
A8 3 A17 
A9 2 A20 
A12 2 A22 
A14 2 - 
A17 3 - 
A20 2 - 
A22 2 - 

 

Table 5.9Accuracies for different sub sets of attributes based on number of votes 

 

Attributes Occurrences/Votes Accuracy (%) 

V18, V19, V24 4 90.6 

V17,V26, A8, A17 3 93.5 

V18, V19, V24, V17,V26, A8, A17 4/3 97.8 

V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,A5, A10, A27 0 82.06 
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Finally, most of the attributes selected are associated with buses 

14,17,18,19,20,21,22,23,24,25,26 which are load buses that are located distantly 

(electrical distance) from the real and reactive power sources (Figure 4.15). This is 

crucial information as weak buses need to be monitored to have an understanding of the 

stability of the system. This weak area identification can be further investigated to 

determine whether the data mining algorithms consistently select attributes related to 

weak buses. 

 

5.8 Conclusion 

 

A systematic procedure to select attributes for decision tree modeling has been 

presented. The method considers data mining techniques as well as the engineering point 

of view of the power system for attribute selection. This opens application s for different 

other voltage stability analysis techniques for attribute selection and research on finding 

better techniques. Another observation is that, the attributes associated with weak areas 

have a significant role in classification. This implies that statistical and data mining 

techniques have the potential for weak area identification in power system.  
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6 Conclusion and Future Work 

 

6.1 Conclusion 

 

This thesis gives a synopsis of online voltage stability monitoring. Current 

practices in online monitoring have been presented along with their drawbacks.  The 

current approach to the problem consists of application of online measurements and 

stored data. For the first method, use of Thévenin equivalent is prevalent. The equivalent 

is highly influenced by reactive reserves (generators) hitting their limits. This is also the 

case for other indices proposed in the literature. Among the data mining methods, DTs 

are gaining popularity due to their speed, accuracy and system information they provide. 

In the power system literature, it was found that the work was lacking in a systematic 

study of attribute selection using power system techniques.   

In Chapter 4, to mitigate the influence of generators hitting their limits, the 

method of reactive reserve allocation has been proposed. This method provides a much 

better accuracy qualitatively as well as quantitatively compared to the Thévenin 

equivalent method.. The offline calculation involved is the determination of VCA. The 

reactive power is allocated to a VCA by calculation of participation factors. The proposed 

method was applied to 2 bus, 5 bus and the 9 bus systems to demonstrate the idea. 

Simulations were done on 30 and 118 bus systems to test the effectiveness of the method 

in large systems. 

 Chapter 5 presents improvement on decision trees method for online voltage 

stability monitoring by attribute selection. The role of data mining approach such as 

decision tree is vital in using the available accurate measurement data in the power 

system. Also, it is very important to extract important data or attributes so that the tree is 

robust, reliable and easy to compute. Data mining itself offers information based (gain 
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ratio), statistical (k-nearest neighbor), probabilistic (naïve Bayes) and others for attribute 

selection. There are analytical approaches in power systems which can characterize 

attributes as well. Can these attributes be used for attribute selection for decision trees? 

The hypothesis has been tested using the tangent vector information of attributes. The test 

system used was IEEE 30 bus system. It was found for the test case that the accuracy of 

the selected attributes on decision trees is very high.  Attributes with higher sensitivity 

were found to be better indicators of voltage instability. Attribute selection will be very 

helpful when it comes to large systems with a huge volume of data. 

 

6.2 Future Work 

 

To improve the accuracy, reliability and speed of voltage stability monitoring 

using reactive reserves more work needs to be done on error analysis and fast and 

accurate determination of VCA. This is possible by working on more systems and 

observing the error behavior. Further, work can be done in the area of techniques to 

quickly determine the VCA. The proposed method can also be extended to online voltage 

security assessment by considering a set of credible contingencies and monitoring the 

smallest margin at any given time. 

Regarding selection of attributes for decision trees using power system methods, 

other methods such as margin sensitivity, modal analysis could be employed to see their 

performance. Tangent vector method has shown potential (Chapter 5) for the purpose and 

is recommended for application in  more systems to test its reliability. Further, the 

methods of selection have shown to give weak buses. This is the area that can be further 

investigated to determine whether the data mining algorithms consistently select 

attributes related to weak buses. 



www.manaraa.com

92 
 

It is also important that a framework in the control center is such that the final 

information is based on both types of approaches of stability monitoring: analytical and 

data mining approaches. As analytical methods can be used to determine attributes, data 

mining approaches can be used to update system parameters for better analytical study. In 

this way both the methods complement one another and yield better results. Such a 

framework is shown in Figure 6.1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Decision tool Using Analytical and Data Mining Tools 

  

Analytical Tools Data Mining Methods 

Measurement Systems 

Independent Prediction 

Final Outcome 

Independent Prediction 

Help Predict Better 

Help by Parameter Identification 
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APPENDIX A. PARTIAL DATA  

 

This is a partial list of data generated. There are 3450 data points in the entire 

dataset. ‘V’ indicates voltage and the number associated with it gives the bus number. So, 

V1 is the column of p.u. voltage magnitudes at bus 1 for the different scenarios. 

Similarly, ‘A’ stands for angles and the number attached is the bus number. 

 
V1 V2 V3 V4 V5 V6 V7 V8 V9 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.98 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.98 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.98 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.98 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.98 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.98 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 0.99 

1 1 0.99 0.99 1 0.99 0.98 1 1 
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A23 A24 A25 A26 A27 A28 A29 A30 Pmargin 

-18.41 -18.15 -16.59 -16.82 -15.49 -12.6 -15.92 -15.92 insecure 

-16.78 -16.49 -15.14 -15.28 -14.21 -12.08 -14.49 -14.48 secure 

-17.57 -17.41 -15.94 -16.13 -14.92 -12.37 -15.28 -15.28 alert 

-18.23 -18.17 -16.61 -16.84 -15.51 -12.61 -15.94 -15.93 insecure 

-16.87 -16.48 -15.13 -15.28 -14.21 -12.07 -14.48 -14.48 secure 

-17.68 -17.4 -15.93 -16.13 -14.91 -12.36 -15.27 -15.27 alert 

-18.36 -18.16 -16.6 -16.83 -15.5 -12.6 -15.93 -15.92 insecure 

-17.17 -16.5 -15.15 -15.29 -14.22 -12.08 -14.5 -14.49 secure 

-18.09 -17.43 -15.96 -16.15 -14.94 -12.38 -15.3 -15.29 alert 

-18.86 -18.19 -16.63 -16.86 -15.53 -12.62 -15.96 -15.95 insecure 

-17.25 -16.51 -15.16 -15.3 -14.23 -12.09 -14.51 -14.5 secure 

-18.2 -17.44 -15.98 -16.17 -14.95 -12.39 -15.31 -15.31 alert 

-18.99 -18.22 -16.66 -16.89 -15.55 -12.64 -15.98 -15.98 insecure 

-17.01 -16.35 -15.04 -15.18 -14.14 -12.06 -14.41 -14.41 secure 

-17.89 -17.26 -15.83 -16.02 -14.84 -12.35 -15.19 -15.19 alert 

-18.61 -18.01 -16.49 -16.72 -15.42 -12.59 -15.84 -15.84 insecure 

-16.88 -16.56 -15.19 -15.34 -14.25 -12.08 -14.53 -14.52 secure 

-17.76 -17.5 -16.01 -16.2 -14.97 -12.37 -15.33 -15.33 alert 

-18.48 -18.28 -16.69 -16.92 -15.57 -12.61 -16 -15.99 insecure 

-16.88 -16.56 -15.19 -15.34 -14.25 -12.08 -14.53 -14.52 secure 

-17.76 -17.5 -16.01 -16.2 -14.97 -12.37 -15.33 -15.33 alert 

-18.48 -18.28 -16.69 -16.92 -15.57 -12.61 -16 -15.99 insecure 

-16.9 -16.58 -15.21 -15.35 -14.26 -12.08 -14.54 -14.54 secure 

-17.77 -17.53 -16.03 -16.22 -14.99 -12.37 -15.35 -15.34 alert 

-18.5 -18.31 -16.71 -16.94 -15.58 -12.61 -16.01 -16.01 insecure 

-16.81 -16.42 -15.09 -15.23 -14.18 -12.07 -14.45 -14.45 secure 

-17.65 -17.31 -15.87 -16.06 -14.87 -12.36 -15.23 -15.22 alert 

-18.35 -18.05 -16.52 -16.75 -15.44 -12.6 -15.87 -15.87 insecure 

-16.64 -16.4 -15.07 -15.22 -14.17 -12.07 -14.44 -14.44 secure 
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