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1 INTRODUCTION

1.1 Overview

Severe and increasing strain has been observed in the powen siystecent
years due to incongruence between the generation and transmissi@tructuee.
Environmental issues, change in energy portfolio and deregulated enarggtsnare
some of the prime factors. The kind of stress developed in thenmsysis caused
concerns for voltage instability. Voltage stability refers to thetstwh a power system to
maintain steady voltages at all buses in the systembadteg subjected to a disturbance
from a given initial operating condition [1]. It is very closedlated to load dynamics
[2]. There are several studies [3,4,5,6] focused on measures to dgcpratict system
conditions with respect to voltage stability and optimal contrbbias to avoid collapse
in the online paradigm. As most of these problems are highly nonliagdr
computationally intensive, there is a need of research to help in reducipgtation and
using direct measurements for estimation of stability margin.

Table 1.1 lists some severe voltage instability incidents overasiehalf century
[7]. These events cause loss of billions of dollars. Due to suchfieigiency of voltage
instability events there is a serious concern for remediasuores. Online voltage
stability monitoring is an effort towards mitigation of suclsteyn wide voltage stability
events. The tabulation is done in terms of time frame of instabilite events have been
classified as long term and short term. The generic defaitee mechanics of these long

term and short term events are described in Chapter 2.
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Table 1.1 Voltage stability incidents

Date Location Time Frame

April 13 1986 Winnipeg, Canada Nelson River HVDC lin Short term, 1 sec
Nov. 30 1986 SE Brazil, Paraguay, Itaipu HVDC link Short term, 2 sec

May 17 1985 South Florida, USA Short term,4 sec
Dec. 27, 1983 Sweden Long term,55sec
Dec. 30, 1982 Florida, USA Long term,1-3 min
Sept. 22,1977 Jacksonville, Florida Long term, few min
Aug. 4, 1982 Belgium Long term,4-5 min
Nov. 10,1976 Brittany, France Long term

July 23, 1987 Tokyo, Japan Long term, 20 min
Dec. 19,1978 France Long term, 26 min
Aug. 22,1970 Japan Long term, 30 min

1.2 Scope of Work

The goal of this thesis is to elaborate on the methods of onlinegeoditability
monitoring. Online voltage stability monitoring is the process of oltgi voltage
stability information for a given operating scenario. The predicsioould be fast and
accurate such that control signals can be sent to appropriatioisc quickly and
effectively.

One approach is to get the stability information directly fréme phasor
measurements obtained for operating conditions. This approach is samgplrequires
few computations. The methods proposed are based on Thévenin equivalegsteia
[3]. The Thévenin equivalent, according to the maximum power tratieferem, is the

upper limit of the power transfer to a load bus. To get the Théegpivalent we need at
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least two sets of phasor measurements [8]. It is found that Thégquivalent gives a
highly optimistic approximation of power margin. The work done in tthesis
compensates the optimistic prediction by applying reactive powetlahility
information of the system.

In another approach, offline observations (either simulated tsesul stored
measurements) are used to build a statistical model of the pgatem. The model takes
measurements consisting of current state as the input and returnsltdge stability
information as the output. The model is periodically updated as the gggtem evolves
through time into different unanticipated states. Artificial ligence methods such as
expert systems [9, 10], decision trees (DTs) [11, 12, 13] and neunadrkset[14, 15] fall
into this category. The use of decision trees is gaining popyubsecause of its simplicity
and the structural insight they provide on the decision being made sitldy is, thus,
focused on improving the application of decision trees in power systéms is
accomplished by a new method for attribute selection based on tiogpj@s of power

systems.

1.3 Thesis Outline

In Chapter 2, existing tools for voltage stability analysis aserd@ed and a brief
introduction on the voltage stability problem is given. Chapter 3 restate of the art
methods for online voltage stability monitoring. Chapter 4 presentsaralytical
approach in determination of voltage stability margin using onlinasarements by
consideration of reactive power availability. In Chapter 5, datitiee methodology in
power system industry and attribute selection method based on tamgémt elements
has been described in detail. Finally, Chapter 6 provides the conclustbssggestions

for future work.
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2 ELEMENTS OF VOLTAGE STABILITY ANALYSIS

2.1 Overview

Voltage instability is a non-linear phenomenon. It is impossibleagmture the
phenomenon as a closed form solution. The instability is manifestedtfumceetwork
crosses the maximum deliverable power limit. There are vatypess of dynamics
associated with the problem, the critical ones being, load dgsamenerator reactive
power limits and contingencies in the form of element outageltage instability is
classified in terms of scale of disturbance (small and Jaage in terms of time of
response (short term and long term) [1].

In the following sections, different aspects of voltage ingtglproblem and their

respective roles are described.

2.2 PV Curves

The PV curve is a power voltage relationship at a bus [2]. &i@ut is an
illustration of a typical PV diagram. ‘V’ in the vertical axiepresents the voltage at a
particular bus while ‘P’ in the horizontal axis denotes the reakbpaivthe corresponding
bus or an area of our interest. The solid horizontal nose-shapedistingenetwork PV
curve while the dotted parabolic curve is the load PV curve. Thatopgpoint is the
intersection between the load and the network curves [2]. Load PV showes the
variation of power consumed by a load at a bus with respect tgedatmlied to the load
which depends upon the load characteristics. The commonly referreauii?¥ is the
network PV curve. It is the network voltage response at a partibukrdue to load

increase in a certain area or bus of a power system. Asystems moves from one
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operating point to another, constant power characteristics and poster 6f the load is
assumed. The top half of the curve is the stable solution vieilbdttom half is unstable
(determined by load characteristics but deemed unfeasiblgofeer system operation
due to high current and low voltage). The two solutions coalesceaintcalled the
critical point (also referred as, the nose point or the point of maximower transfer).
Beyond this point, the power flow does not converge. There are numbetakfauch
as the generator reactive power limit, contingences, load dynastriess direction, etc
that affect the distance of the nose point from the point of oper&wminderstanding

these factors the system can be steered away from the noseampdimake the system

stable.

Hetwork PV Operating Point
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Figure 2.1 Load and network PV curves
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2.2.1 PV Curve Tracing

PV curve tracing is computationally intensive and requires pra@odiniques to
avoid numerical instability. For a simple two bus system, a closed forrasskn can be
developed [2]. A series of network PV curves (for varying powaofahas been drawn
using this expression in Figure 2.2. Although the curves are fano tis system, the

shapes are quite general.

11 T T

tamg=-0.2 |

tang=:0.1

tang=

tang=0.1

Figure 2.2 PV curves for different power factors

A closed form expression for voltage and power in large sys(syssems with
more than two buses) is not possible. In such a case, the techniquemlige the power
flow equations numerically for each operating point. This makes rdeng highly

computational. As the system gets closer to the nose point, getting gemeeris
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difficult. This is because, the power flow Jacobian approacdingsilarity towards the
nose point and becomes singular when it is at the nose point. The sipgdases the
power flow solution to diverge. Continuation power flow (CPF) [16] methed i

commonly used to solve the divergence problem.
2.2.1.1 Continuation Power Flow (CPF) Method

Equation 2.1 is the state-space representation of a power system.
x=F(xyp)
2.1
0=6xy.p)

This is a differential-algebraic system (DAS). In equatih, x represents
dynamic state variables of the system (mostly rotor angles, rotaissptesgue, etc), Y
represents the algebraic state variables (usually bus voltage magaitddesgles) and
P represents the parameters (real and reactive power injeatieash bus) appearing in
F andG . The functionF denotes the differential equations for generators, tap changing
transformers, etc and the functiGrrepresents the power flow equations.

The point at which the Jacobian of the system of equations 2.1 becogars
is called bifurcation point. At this point, different branches of egpilim points intersect

each other. The Jacobian of equation 2.1 can be represented as follows:

F, F
/= [G_x _Yl 2.2

Here, G, is the power flow Jacobian. The singularitylcguarantees that the system goes

£

into bifurcation while the singularity at,, may or may not lead to bifurcation. The load
level which produces a singular load flow Jacobian should be consideredirarstapt

upper bound on maximum loadability. For voltage collapse and voltagabiiity
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analysis, any conclusion based on the singularity of the standardldeaddcobian
would apply only to the phenomenon of voltage behavior near maximum powdertrans
Such analysis would not detect any voltage instabilities asedciaith synchronous
machine characteristics or their contrdls.approaches singularity as the system loading
is gradually increased. [17]

The CPF can be summarized using the flow chart shown in Figure 2s3isThi
based on predictor- corrector process. From a known operating point, atignedic
made towards a more stressed condition by increase of the lcatigberi. Small
enough steps should be taken such that the power flow at each stemesrouackly.
Corrector step succeeds predictor step. In corrector step, the@satithe power system
at the predicted parameters is obtained. The requirement of teetoosstep is to correct
the linear prediction of non linear equations. For the correction atpparameter called
the continuation parameter is fixed. This step is crucial fiwaes the system to come
back to the solution. The process is repeated until we reach the criticalpoint

The Predictor stepis used to determine the tangent vector. This is accomplished

by solving equation 2.3.

ds
G5 Gy ﬁ]x[dz]=0
di 2.3

The matrix of derivatives in equation 2.3 is simply conventional povesv fl
Jacobian augmented by one columé@y() andt defined ast=[dd dv dA]T is the
required tangent vector. After this, an appropriately dimensionedventor is added
with all elements equal to zero except kieelement, which is set to 1. Proper choice of
the indexk, such thaty,=t1 imposes a nonzero norm on the tangent vector and guarantees

that the augmented Jacobian will be nonsingular at the criticat. Hence, the tangent

vector is determined as the solution of equation 2.4.
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dé
€er 2 - i].
da
The next operating state is predicted as in equation 2.5.
2l ) s 25
Vif=|vl+o dy]
A A da

In equation 2.5, *' denotes the predicted solution asidis a scalar designating step

length.
The corrector stepis accomplished by local parameterization; where original set
of equations are augmented by an equation that specifies theofabme of the state

variables called the continuation parameter. The simultaneous equaileed are as in

equation 2.6.
)
[xG(? ] =0x=1V
e P 2.6

Where is an appropriate value for tRE element of.
Another approach for implementing the corrector step is the perpésnrditep

method. The additional equation is the condition that the vector conndatimgrrected
solution and the predicted solution should be perpendicular to the tangéort Jdus
the sets of equations to be solved are as in equation 2.7.

2.7

G(x)
[{xiﬂ _ xi+1,p}_£ =0

Next, the continuation parameter is selected as in equation 2.8.
2.8

X |te] = max{|t,], [t2], ... |t}
Finally, the critical point is identified by checking the sigindA component of

the tangent vector. Positive value signifies upper portion of theulPx cnegative value
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signifies the lower section of the curve and zero means theatyioint. The tangent
vector that is obtained as an intermediate step in continuation gtomercontains
sensitivity of the power flow parameters with respect to m@alher loading. This

information is used in selecting the attributes in Chapter 5.

Predictor Step

l

Select Continuation parameter

l

Corrector Step

No

Yes

Figure 2.3 Flowchart for continuation power flow
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2.3 QV Curves

QV curve is the relationship between the reactive suppoan@ the voltage at a
given bus. It can be determined by connecting a fictitious gemenath zero active

power and recording the reactive powerpg@pduced when the terminal voltage is varied

2].

-
P=0
5 Qe
@—l:l——f &
E/ 0 /A

Figure 2.4 Setup to produce VQ curves

Considering the two bus examples as shown in Figure 2.4, the power flow

equations are as shown in equations 2.9.

P = EY i 0
-y o 2.9a.

v: EV
Q—QC=—7+70059 2.9b

VQ curve is a characteristic of both the network and load. Foysisaif steady
state operation, the steady state load characteristics neduts ¢onsidered. Here, a

constant power load characteristic is assumed which is a common practice.
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For a given value of real power (P) and voltage ®)is determined from
equation 2.9a. Then gan easily be determined from equation 2.9b - using the value of
load reactive power and the variable determined from thepi@ndt The result yields a
QV curve similar to the ones shown in Figure 2.5. The minima of thvesumdicate the
available reactive power margin before the system goes t@editalapse. As shown in
the figure 2.5, the lengths of the arrows give the reactive poweggin in terms of
appropriate units. Curve 1 has negative margin. Thus there is no Viekagéor which
this system can be operated without some external reaciy®ig. Curve 2 is a stable
case with some reactive power margin and curve 3 has even m@ia.nhore margin
implies more robustness of the system in terms of voltage stability.

The right hand side of the QV curve with positive slope is takle region and
the left hand side of the QV curve with negative slope isitistable region. They can be
computed at points along the PV curves to test system robustnessisTineiivergence
at the nose. This makes the QV curve computationally attractive.

The nature of slope of the QV curves gives us indication of hoerdift devices
impact voltage stability of the system. For example, with gemgr units hitting the
reactive power limits, the QV curve flattens out. This signifies the mésseto instability.
With QV curves the characteristic of shunt reactive compensatitme test bus can be
plotted [18]. The operating point is the intersection of the QV sysfearacteristic and
reactive compensation characteristic. This directly giveh@siotion of reactive power
margin and the current operating point, which is useful for plannim aperation

purposes.
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Figure 2.5 QV curves for different load levels

One of the information that can be accessed from the curdles gensitivity of
the loads to the reactive power sources. While varying the reactiver requirements of
a bus, the generators that deplete their reactive reserves thhdamoghe reactive power
sources for that bus. This quality of the QV curves has been useddatémmination of

voltage control area (VCA), as described in detail in Chapter 4.
2.4 Load Models and Dynamics
Load is an important factor of voltage instability. Load charaties also govern
the dynamic evolution of voltage instability. The point of voltage pskacan be

different for different load models. Therefore, it is necessarynderstand the load

correctly and model it accordingly. At the same time it difacult task because bulk
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power system is an aggregate of loads of varying chardieri®\nother important
aspect is the load restoration dynamics which includes slow ahddang loads. Load
restoration attributes to the fact that power system hasridertey to restore its voltage
level through some of the devices, as load tap changers or voltage contrgdeerdtors
and static reactive controllers. As a result, the load is eskttr its original level by
establishing the set point voltage in the final state. The powtration can be fast as in
the induction motors [7, 19], high voltage direct current (HVDC) links [2, 7] or slow as in
the load tap changers (LTC) and thermostatic load recovery [2].

Load voltage characteristics, or simply load characterjst&csan expression
which gives the active or reactive power consumed by the loadf@asction of voltage
and an independent variable called the load demand. Denoting load daswmnitie
general form of load characteristics is as shown in expression 2.10

P =P(zV)

2.10
Q=0(zV)

Exponential and ZIP (constant impedance, constant current, constant foaser)
models are some of the commonly used load models [2].

2.5 Generator Excitation Limits

Generators are the main source of reactive power in the powemsygheir
reactive capacity is limited by field current, armaturgrent and end region heating limit
or under excitation limit, as shown in Figure 2.6 [18]. This figuuxegia tentative model
of the reactive power capability of a generator. Power flow prognaostly model the
generators as having reactive power limits as marked blgrtien lines in Figure 2.6.
This is a simple and conservative model of the capability clitve.maximum reactive
power output is set using an over excitation limiter (OXL). Doetime-inverse

characteristic of OXL, we have the generators cutting off ireapbwer supply after the
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excitation current hits its limit. This can result in long temitage instability. As soon as

the OXL hits the limit, further increase in reactive powenads possible [20]. This is

observed in PV and QV curves as a sharp discontinuity. In this thiesisnability of

Thévenin like methods to anticipate this discontinuity has been thoroughly explored.

approximations
used in power
diagrams

owver excitation limit

artmature current limit

e

¥

N

under excitation limit

Figure 2.6 Generation capability curve

2.6 Types of Voltage Instabilities

Based on the severity and time of action of different devibegetare four

categories of voltage instabilities [1] have been quoted in the followingnaatas.

“Large-disturbance voltage stabilityefers to the system’s ability to maintain

steady voltages following large disturbances such as system faultef lgsseration, or

circuit contingencies. The study period of interest may extend frfiemw aeconds to tens

of minutes.”
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“Small-disturbance voltage stabilityefers to the system’s ability to maintain
steady voltages when subjected to small perturbations such as increciegtgles in
system load. This form of stability is influenced by the charatit=rioof loads,
continuous controls, and discrete controls at a given instant of time. dhiet is
useful in determining, at any instant, how the system voltages will resposihall
system changes.”

“Short-term voltage stabilityinvolves dynamics of fast acting load components
such as induction motors, electronically controlled loads, and HVDC conseriére
study period of interest is in the order of several seconds, and anaygsises solution
of appropriate system differential equations.”

“Long-term voltage stabilityinvolves slower acting equipment such as tap-
changing transformers, thermostatically controlled loads, and generator curneieis.
The study period of interest may extend to several or many minutedoragiterm

simulations are required for analysis of system dynamic performance.”

2.7 Voltage Stability Dynamics Using Network and Lad PV

Curves

In this section, the process of voltage stability dynamicgptaaed using the aid
of network and load PV curves [2]. This is illustrated in Figure 2.7.

An operating point of a power system is the intersection of loachctesistics
and network characteristics. As long as there is a point of @cteya between the two
curves, an operating point can be obtained. Consider a contingencgsihiés in a new
network PV curve and hence the system moves from moitd point b. Point b
corresponds to the short term load characteristics. In the éong the power restoring

devices act on the system. This gives the final operating pothtoughc. The vertical
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line ac’ is the long term load characteristics. The intersection isphiat the system is
able to restore power at steady state. In the steady aalgsis, constant power

characteristics of the load is assumed, which is also the most restrestragtion.

shott -term load

chatacteristics
&
-';"T a
r'd i
-1 ,
. ! nortmal
£|I
dfter protetiive /
drtions

tig -term load

characteristics
i
i
i
i
i
i

¥

F
Figure 2.7 Voltage stability dynamics sequence

Consider the outage of another device from the system at pdunsequently
we have a smaller PV curve and the new point of intersectidnHswever, there is no
intersection between the load and network curves in the long run. Ttenstisen

becomes long term voltage unstable.

2.8 Conclusion

This chapter gives a general overview of the mechanism of valatgbility

tools available for study and factors to be taken into consider&iiommproving the

voltage stability. For an extensive voltage stability assestsofea system, all of these

factors have to be taken into account. The details in modeling shouldcleled
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intelligently. For example, it is not necessary to model the s of the load
restoration devices and fast acting loads if the purpose is tthergtatic stability margin
of the system. Drawing the PV curve with constant power modalsfii€ient for that
purpose. On the other hand to determine the control actions in ordeertmbme short
term voltage instability the detailed modeling of load and tinseguence of different
devices becomes necessary. For the online voltage stability nmogitor estimate the
static voltage stability margin, it is customary to model loagsconstant power and

generators to have constant reactive power limits.
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3 REVIEW OF ONLINE VOLTAGE SECURITY MONITORING

3.1 Overview

Power system security is the ability of the system to gerlkely disturbances
(contingencies) without interruption to customer service. Basic fnamefor security
was first proposed by Dy Liacco [21]. He considers the powermyatebeing operated
under two sets of constraintsad constraints and operating constraints.

The load constraints impose the requirement that the load demandbemust
by the system. The operating constraints impose maximum or ormioperating limits
on system variables and are associated with both steadyasthtelynamic stability
limitations. The conditions of operation can then be categorized hné@ toperating
statesnormal, emergency and restorativEne conceptual framework established by the
three operating states has been illustrated in Figure 3.1.ténsys in thenormal stateaf
both the load and operating constraints are met. A system is emirgency staterhen
the operating constraints are not completely satisfied. Amyistén therestorative state
when the load constraints are not completely satisfied. Thieisdse of either a partial
or a total system shutdown.

This research is focused on the security monitoring aspecte\ite objective is
to determine if the power system is operating in normal siateg the real-time
measurements. The method developed can be extended to security abglysis

considering a contingency list.
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Figure 3.1 Power system operating states and the associated stétertsathge to
contingencies and control functions

Online security monitoring poses the problem of finding the distancanof
operating point from stability. The measure obtained may be apixaitor quantitative.
Qualitative measure doesn’t give the exact megawatt (MWgimaut some number that
can be interpreted in terms of stability, known as an indexni@atvely we know exact
MWs from distance to stability with respect to a crediblenade. Finding MWs can be
computationally intensive, so the focus is in generating a voltadpity index. For
online applications, these indices are such that they can beatattédom the available
online measurements. This thesis however, proposes a fast methadirately getting
the quantitative measure of voltage instability from online measmemAlternately,
offline calculations and stored measurements can be used to msidtisical model of

the power system. In the following sections, state of the arindexibased voltage
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instability measure and artificial intelligence based voliag&ability measure are briefly

discussed.

3.2 Index Based Voltage Instability Measure

There are certain irregularities or unigueness in the syls&ravior towards the
onset of voltage instability. The index based instability measaptures this unique
system behavior in terms of a number and interprets them to give the notion ofedistanc
instability. The indices can be used as a reference valueta control routine. Some
examples of system characteristic towards voltage instabilé-the singularity of load
flow Jacobian as discussed in Chapter 2, the generators hitting their reaeteelimits,

Thévenin equivalent approaching load impedance, etc.

3.2.1 Index from Direct Phasor Measurements

There has been a drive for getting voltage stability indexctifrérom phasor
measurements with the installment of Phasor Measurement Bihitgs). The PMUs
can give an accurate measure of voltage and current phasors ipshandhasor
measurements have been applied for the calculation of voltage egliepsmity index
in radial networks [22, 23]. The phasor measurement based approastifieation of
voltage stability index can be extended to general syster2g¢,[25]. The method is fast,
but yields poor accuracy.

In a study done by Haque [26], a prediction algorithm for the Thévenin
equivalent is proposed. The proposed approach fails to address the issatycasrthe
reactive power reserves of the system have not been takeacaaont during prediction

of voltage stability margin. Begovic and Milosevic [27] use awdlity of reactive power
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reserves without any discussion of the relationship with the Th@&wmqiivalent. The

simplest version of Thévenin equivalent method can be described as follows [3]:
Figure 3.2 is a Thévenin equivalent representation of the powtnsysith

respect to the load bus under consideration. By equating the rgcaivihsending end

currents we get the expression 3.1.

P+jQ:I_*:<ETh—V> 3.1

(P+jQ)Zy =V(Em — V)

Equation 3.1 is quadratic i@ and there are two solutions for a given power
demandP + jQ. By symmetry, ifi’ is one of the solutions the&i,, — V)* is the other.
The two solutions will be equal at the maximum power transfer ladalution will

cease to exist for the demand beyond the maximum power transfer.

W |

= 21-1 = R-{-' + ‘Xf
E,; th th T JAth

=lI

|

Zoppy =R+]X

Figure 3.2 Thévenin equivalent representation of the power system

Hence, at maximum power transfer, relations 3.2, 3.3 and 3.4 exist.
V= (Eth - V)* 3.2
_ _ _ _ 3.3
o1, Zapp X I = (L X )"
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Z_appl = |Z_th| 3.4

or,

The apparent impedandiﬁappis calculated as the ratio of voltage and current
phasors measured at the bus. The distance between the parafijgieasidZ,, gives
the margin for stability, which can be directly related to power margin.

To determine th@hévenin Equivalentonsider the equation 3.5.

Ep=V+Zyl 35

In equation 3.5Vand] are measurable quantities. They are the measurements
obtained from PMU. Since equation 3.5 has two unknoviisandZ,,, at least two
measurements are required to estimate them. One of the dravdbablesmethod that
can be pointed out here is the required interval between the readiimg time window
for measurement should be such that the loading condition changes metwuerk
conditions do not. The assumption is reasonable but can’t be guaranteetalPi@4],
propose a solution to this issue by proactive movement of the tap changer transformer
avoid multiple readings for the Thévenin equivalent, Larsson et ahghg limited the
application to transmission line corridor. For the case of twomgadE,,andZ,,can be

directly calculated as in equation 3.6 involving complex calculations.

th 1—1 _ 1—2
_ _ 3.6

N AN /A

Zn =17

2

For a general case, Bf, =E,+jE,V=u+jwandlI= g+ jh. Thus
equation 3.5 can be broken down into real and imaginary parts and writtes inatrix

form as in expression 3.7.
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E,
Lo Al |- 1
t

0 1 —-h —g 3.7
Xtn
Decomposing 3.7 we get,
1.E,+0.E; — g.Rep + h. X, = u
3.8

O.E-r + 1'El _h'Rth _g'Xth =w

Equation 3.8 is a multi linear equation. The coefficients which areeifleand
imaginary parts of Thévenin source voltage and impedance cadetbanined by the

method of least squares [28].

3.2.2 Index from Load Flow Jacobian

The use of singularity of the power flow Jacobian matrix asnalicator of
steady-state stability was first pointed out by Venikov eR8],[where the sign of the
determinant of the load flow Jacobian was used to determine stenstability. As
discussed in Chapter 2, the singularity of load flow Jacobian does®ssady mean
that the system Jacobian is also singular. However, for voltaigpse and voltage
instability analysis, any conclusions based on the singularitheostandard load-flow
Jacobian would apply only to the phenomenon of voltage behavior near maypiower
transfer [17]. Such analysis would not detect any voltage insiabilitssociated with
synchronous machine characteristics or their contfiglapproaches singularity as the
system loading is gradually increased.

Based on these assumptions we have methods related to singular val
decomposition, eigenvalue decomposition and test function techniques [4, 5, 3Me31].
idea is to track the minimum singular value or eigenvalue ofytsters. The smaller the

value, closer the system is to collapse. This information is @deloein the right and left
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eigenvectors associated with the critical eigenvalue which beil discussed shortly.
However, the smallest eigenvalue (or the singular value) mapentite most sensitive
and some other eigenvalue may approach singularity even more quickly. it might
be critical to track a number of eigenvalues. The methods giveyayged insight about
the system such as critical buses and critical stresstidime with respect to voltage
collapse.

The Gao et al [5] discuss the eigenvalue decomposition technigueltage
stability index determination. The decomposition may be applied girecthe reduced
load flow Jacobian matrix as it is quasi-symmetric [31] and, therediagonalizable.
Furthermore, due to quasi-symmetric structure, one expecistam a set of only real
eigenvalues and eigenvectors, very similar to the correspondigglainvalues and

singular vectors.

3.2.3 Other Techniques

L-index [32, 33] is another important voltage instability index whiesesible
value ranges from 0 to 1. Values closer to 1 suggest that thensys closer to
instability. The limit criterion is such that both load flow Jaembsingularity and the
maximum power transfer theorem hold true.

Availability of reactive reserves has a direct relationshiphéovoltage stability
margin. Voltage instability is a local problem as reactive paw@enot be transported to
long distances due to the inherent inductive nature of the trasismgs/stem. As a result
many studies have explored the role of system reactive powecesosuch as
synchronous machines, switched capacitors and static voltage costrtuigards

contribution in voltage stability. [6, 34, 35, 36, 37, 38, 39, 40, 41]
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L.H. Fink [6] proposes real-time reactive security monitoringrimnitoring the
contingent VAR (voltage ampere reactive) margins of all tbeeg within a given
system. Zones are a group of one or more “tightly” coupled gendratms, together
with the union of the sets of load buses that they mutually supporid@&adehind the
method is that the voltage stability problem has a local origin and thaknectly related
to the availability of reactive power sources. Schlueter [34-36] prepdke
determination of proximity to voltage collapse by monitoring thetiee reserves. The
reactive reserves are obtained by determining VCAs. In entauethod [37], VCA is
determined directly by the method of sensitivity.

Further, in reactive reserve monitoring, use of switched capsdi® maintain
VAR reserves in a system [38] and use of generator rotoingdavel as an indicator of
system voltage stability [39] have been suggested. BPA developggstam that
monitored many key generators [40]. This work introduced an indexrteasured the
total reserve level of a system. A small index value wouldnntleat the system is short
of VAR reserve. However, the method did not quantify the relationship between the VAR
reserve level and the voltage stability level. As an exten8aaq,et al [41] proposed a
method to relate the VAR reserve level with voltage stabiliigrgin by monitoring
certain key generators which have a prominent role in determininig\ubkeof voltage
stability through their reactive reserves. This is a very gndtation of use of reactive

reserve for voltage stability margin determination.
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3.3 Artificial Intelligence Techniques

Intelligence to the monitoring tools can be inputted via simulagapgrimental
data) or scientific rules or rules based on ad hoc knowledgepefrierced operators.
These techniques are called artificial intelligence technideesthe tools to perform
better we need to train them with as much data and scensnpmssible. It is up to us to
decide how large a dataset we want to work on. This is importeatube it is possible to
literally have infinite number and dimension of data points. Dinoensneaning the
number of variables under observation. Both number and dimension of dafaorsant
to reduce the training time, complexity as well as accuracy of the.resul

An important classification of artificial intelligence techues is based on their
inductive or deductive nature. Inductive techniques gather information ofodese
model from the available data directly to give the decisionsewhé deductive technique
works on the set of rules and series of deduction before coming tolastoncThe rules
have to be fed via experts or these could very well have lm@raged from data itself.
The deductive machines are also called expert systems. fiigsltito generate rules for
deduction especially for very complex systems such as powemsysthich makes
inductive techniques more attractive.

Some of the popular artificial intelligence approaches are esp&tiems, decision
trees, artificial neural networks, genetic algorithms and fuzzy sgstem

As mentioned, expert systems are deductive machines. Experimsysan be
compared to human operators with much faster response. The spegllysdesirable
because humans would have very little time to react against sudaknagge
disturbances which can cause the system to collapse in splitdseAn expert system
package has four main parts: Inference Engine (IE), Knowledge @8¢B), Data Base

(DB) and Explainer. The information from state estimation, sgcassessment and the
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generator reactive reserves forms the DB. The IE takesldlee in the database to
interrogate rules in knowledge base. [9] L-index can be an input teximert system.
Based on the index values decision is made according to the predefined if-thell@iles.

The artificial neural network (ANN) approach [14, 15], decision approach
[11, 12, 13] , k-nearest neighbor approach [42] are inductive learnersletiston tree
technique is a classification technique that can be used in vottdgktys assessment to
categorize a given operating state as either stable or undtiwever, we can also have
a range of stability margin. One of the goals of the thegise study on improvement of
decision tree approach as applied in voltage instability of peysems. The details will
be provided in the fifth chapter. K-nearest neighbor technique is anatheies
classification method. This method is based on voting system. A neatiogepoint is
classified based on its proximity to the training instances. K=5. If a proximity
measure gives 3 instances close to the test vector thsiiabie and 2 close to those that
are not stable then the test vector is classified as stable.

ANNSs have been used in voltage stability analysis to detect voltage ingtalal
classification) and function approximation (estimating margin). impat to the model is
power flow results and the output is an index such as L-index or baked on singular
value decomposition (SVD). Just like the decision trees ANNsraireet! off-line using
previous data.

The genetic algorithms (GAs) [43] are used in voltagbilgtabased problems
for planning and other optimization situation. They are search @ilgwiwhich find the
fittest combination of variables or the optimal set. They can eé tessupport decision
trees or ANNSs in reducing the attributes of the datasetzyFimeory [44] is also used in
aid with machine learning approaches. In voltage stability probtemsnagnitude of

output variable is employed to label the voltage security levels.
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3.4 Conclusion

In this chapter a broad picture of power system security asses$ras been
presented. It gives us the background to understand the relevancevofihavolved in
this thesis. Literature survey of the currently employedhous has been systematically
presented. It has been emphasized that computational efficiepegdjsis the key
element for online stability monitoring. The drive towards the dw either been
through increasing the power of computational devices (i.e., havindgpanakchines) or
by reformulating the problem such that the information is interpretedettfy requiring
less computational effort (i.e. index). The later is the philostyetmynd using the voltage
instability indices.

Data from field measurements can be important source ofnsysfermation.
Using artificial intelligence techniques information from theade&n be extracted for
stability monitoring. This chapter also gives an introduction toeheshniques and

provides a foundation for the fifth chapter.
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4 VOLTAGE STABILITY MARGIN PREDICTION USING
REACTIVE POWER AVAILABILITY

4.1 Overview

The analysis of voltage stability phenomenon is performed caligti or
dynamically depending upon the requirement. The static method isausstimate the
voltage stability margin from the current operating point forv@miscenario. PV curve
tracing based on continuation power flow [16] is one such tool. Index lwaoh flow
Jacobian is useful for static voltage stability monitoring. Ondtieer hand dynamic
voltage stability analysis is to understand the voltage stabighanism and determine
the control actions such as maintaining reactive power reservestat@ excitation
limiter actions, capacitor switching, transformer tap settamgl others through time
domain simulations [45, 46, 47]. These methods are computationally burdensome
therefore their adoption in the real-time environment is infeasible.

With the development of PMUs and wide area measurement systdmehel
accuracy and speed is achieved in measurement of the power syatesa Sufficient
number of PMU location gives complete state estimation of thiersy[48, 49]. Various
efforts [3, 22-27, 50, 51] have been made in order to apply the fascamcit@ phasor
measurements for real time voltage stability monitoring. israf intelligence methods
as discussed in Chapter 3 use the phasor measurements totlassessent system
conditions and give the voltage stability information based upon modelogedefrom
the stored measurements. Alternately we have methods basedcah phasor
measurements that can be implemented in a distributed mannetsaa®unt for the
entire network. The proposed methods as mentioned are heavily dependent on the

accurate estimation of the Thévenin equivalent. Gubina et alafi®]Corsi [51] have
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proposed more accurate methods of Thévenin equivalent estimation. dttedm
however has one further issue of not being able to adjust forféat ef the generators
hitting their limits. The forecast is exact if the netwogkiwalent stays unchanged and if
no limiting devices act. The forecast is believed to be optinbstico further discussion
on the resolution of the issue is available. [52] Because of thentiisuous change in
Thévenin equivalent (when a generator hits the limit) it is raimenendable to directly
predict Thévenin equivalent or its direct derivatives. Other velsgbility indices [4, 5,
30-33] also share this characteristic of having discontinuity winemgénerators hit their
limits. Thus, it is essential to take into account the reactiyeply depletion when
predicting an index or a margin. The work here identifies a mmgie approach to take
care of the discontinuous drop of network strength due to exhaustion oegamiver
supply to a bus. The real time observations that we need ategaower generation of
different generators and the loading at the different buses. Ttagsdeeadily available
from the SCADA. Given the observability of the system via PMUisect phasor
measurements could be used for the margin prediction.

In section 4.2 background and the motivation of the method is presented.
application of the method for various scenarios has been proposection 4.3. Section
4.4 describes the online implementation of the method. The resuliemae@nstrated in

section 4.5. Finally section 4.6 gives the concluding remarks.

The
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4.2 Background and Motivation

The objective here is to predict the maximum loadability of a (pomt ‘B’,

Figure 4.1) from a given operating condition (point ‘A’ Figure 4lf)this work, using

the real time measurements, the task has been accomplishdxdielng @f offline and on

line calculations.

Voltage

Based on the online

measurements predict
the maximum loading
point

Maximum
power prediction

B

Povwrar margin

Power Loading at abus

Figure 4.1 Reactive power and margin estimation

The over prediction of stability margin due to Thevenin equivalebétause the

prediction is in terms of network strength. However, powetesys are more often

choked off of reactive supply. As a result we have a voltage itigtagituation much

before the limit obtained using the maximum power transfer thedtieen case for

Thévenin and similar methods). Schlueter [36] discussed manibestaf voltage

instabilities. The exhaustion of reactive power sources for agigiage control area

(VCA) or loss of voltage control is followed by exponential inceemsreactive power

loss (clogging). Clogging can completely choke off the reactiveepdew to the VCA

needing reactive support.
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The Thévenin equivalent method draws our attention to the type of voltage
instability where the network is no longer able to transfer powkis is a case that
would arise with sufficient reactive power but insufficient network strength.

Hence, considering the two situations, ideally the power margin should be:
minimum (power margin by network, power margin by reactive power availability)

The two margins have been distinguished by classifying the bssgeaative
reserve limited’ and ‘transmission limited’ as an explanatmjustify misclassification
of some of the buses by the sensitivity based method [37]. Theedidfe in margin due
to shortage of reactive power and network strength can easilgrbendtrated using a 3
bus system as shown in Figure 4.2. Buses 1 and 2 are stronghhtiedhe tie between
buses 2 and 3 is relatively weak. Generator 1 is the prinoarges of reactive power for
load at bus 2 while the generator at bus 3 is not.

! 2

On -

Figure 4.2 Three Bus Test System

Figure 4.3 is a plot of loading at bus 2 in the horizontal axi;sigthe power
predicted by Thévenin equivalent method in the vertical axis. fhialiprediction
(initial portion of the curve), approximately at 23 p.u. is the maxirpomer that could
be transferred, if we had unlimited reactive supply. There is a sutigein predicted
power margin at a loading of 6.7 p.u. At this point Generatorattike power limited at
4 p.u.) hits the limit and the power predicted drops to 8.0 p.u. Eventildipower flow

diverges at 7.9 p.u. It is the indication of generator at bus 3 hikiengmit as well. The
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simulation of Figure 4.3 was done using various levels of reactpercity (in Figure 4.3
the limit placed was 5 p.u.) of generator at bus 3 and fixediveacapacity of generator
at bus 1. Even after considerable increase in reactive capagénerator 3 it was found
that the increase in margin was not significant. Figure 4.4 isconeesponding PV
diagram. The proximity of margin due to loss of voltage controhgastion of local

reactive sources) and clogging is demonstrated [36].

24

Zth power prediction, p.u.
5 & &5 & 8 0§

[EnY
e
1

6 L 1 L 1 L 1
1 2 3 4 5 6 7 8

Loading at bus 2, p.u.

Figure 4.3 Thévenin power predictions with high limits on generator at bus 3
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Figure 4.4 Maximum power obtained for reactive power limited generators

There are two observations:

e The maximum margin for loading at bus is influenced by neagiower
availability at certain generators ( here, it is generattimat influences
the loading at bus 2)

e If we had the reactive reserves large enough then the maxjpower
transferable is constrained by the network limit (here 23 p.prexiicted
by the Thévenin model initially where the generator 1 hittsi¢jmit was
not anticipated). This situation wasn’'t observed for the testersgst
considered.

With the above observations it is therefore sufficient to considetive reserves

contributing to point of loss of voltage control for the voltage stability margin prediction.
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4.3 Proposed Method

Suppose, the maximum reactive pow@f,f..na) that can be supplied to a load
bus is known. With the assumption that the load increases with copeteet factor, the
maximum real powerR,,4enq) that can be transferred to a bus is given by equation 4.1.

4.1
Pioadena = Qioadena X coto

Given the nonlinear nature of power system it is very difficult t
estimateQ;,qqena- The general form of reactive power equation for the maximawting
of a particular bus can be formulated as in equation 4.2.

Qtotat = Quossend T Cnetworkena + Quoadena 4.2
Where,
Q:otar - total reactive power that is consumed by the system atmaxloading of the
given bus
Q10ssena - reactive power loss at maximum loading
Qnetworkena - Feactive power consumed by the rest of the network buses wiaighbe a
constant or may vary depending upon system scenario

Qoadena. Maximum reactive power loading of the bus under consideration

In  equation  4.2Q,,44enaCan  be  determined only @, :a,
Qrossena@NdQerworkena Can be estimated beforehand. Depending upon system
complexity and scenarios different techniques need to be empleigeae 4.1 gives a
high level perspective of the margin estimation process. The Hbnven Figure 4.5
gives the outline of steps in power system operation environment whidelf

explanatory.
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In the section that follows, step by step process has beetoped for different
scenarios and complexities of power system. First the methogblsireed for a simple
two bus system and further elaborated on a multiple bus systgeneralize the whole

idea.

Cnline Measurements

LU }

Estinate reactive loss at

'[ instahility
. - Estirnate and update
( Estirnate margin availahle reactive supply
for a bus using REBs and
WCAsg
. [5 secure?
Tes
Ma
( Control Actions }

Figure 4.5 Flow chart of system operation with algorithm implementation
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4.3.1 Two Bus System

For the two bus case, equation 4.2 reduces to 4.3 witho@t,the, rkenaterm.
4.3
Qtotat = Qiossena T Quoadena
This is the simplest case possible as there is no interao@itweeen different
buses. The load and source are well defiigggl,; is the maximum reactive capacity of
the generator Q,,ssenq 1S predicted using the observations of reactive loss and reactive

power generation level. This is discussed in section 4.3.3.

4.3.2 Multiple Bus System

In this case the reactive power equation is same as equation 4.2. That is,
Qtotat = Quossend T @networkena + Quoadena 4.4
There are three quantities to be estimated before the valdig,9f,4 can be
determined.
Qtotar 1S the summation of maximum reactive powers of generatdheisystem
( with the assumption that reactive power sources and sinks anglgtcoupled). This
implies, at the loadability limit all the generators will lose their \gdtaontrollability.
Qnetworkena Ca@N be thought of as two types. One is the case where tHeealis
increment in single bus while the other is the case where ther multiple load
increments. For the first cagk.iworkenqlS @ cOnstant and can be obtained by summing
the reactive load demand at every other bus. For the second lddsenzodification in
equation 4.4 is required. Considering proportional increase of loatl btises, the

equation can be developed as followsQlf.;or«IS the current network reactive power
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absorptionQ;,.4 IS the current reactive power absorption by the given bu®ang, is
the net total reactive power that is available for differexaid$ excluding the losses,

equation 4.4 for this system changes to equation 4.5.

Qtotat = Quossena + Qavail

4.5
By proportionality,
(Quoaa/ (Qnetwork + Quoaa)) X Qavait = Quoadend
o7, Quvait = Quoadend (Qnetwfrl:of Qload)—l 4.6
Replacing 4.6 in 4.5 we get,
Qtotar = Quossend + Quoadend ( Qneton::T Qload)_l a

Next Q;pssena 1S t0 be estimated to determifg, qenq IN €quations 4.3, 4.4 and

4.7.

4.3.3 Determination of Reactive Power Loss

Figure 4.6 is a combined plot of reactive 108g (), predicted maximum reactive
power loss Rredicted Q;,550nq) @nd the Thevenin equivaler,f ) for a bus, versus the
total reactive power generation of the system. The reactiverpoa® and Thevenin
equivalent have been normalized by their corresponding largest value, while tlogepredi
maximum reactive power loss has been divided by the actuahmaxivalue of the

reactive power loss. In Figure 4.6, reactive power loss is quaappcoximately) while
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the Thevenin equivalent impedance is discontinuous at the operating whbemns the
generators hit their limits. Due to the smooth nature of taetike power loss curve, it
can be more accurately estimated compared to Thevenin equivalent.t@vquadratic
nature, the reactive power loss has been modeled as a quadratanfohtbtal reactive

power generation in this study.

)

Qloss/Zth/Predicted Qlossend

1.4 1‘.6 ) l‘.8 2 2‘.2 ?‘.4 2‘.6 2.8 3
Reactive power generation, p.u.

Figure 4.6 Combined plots of normaliz@g,s, Qiossena @NAZ,p, With respect to reactive
power generation for a typical system (here IEEE 30 bus system)

The quadratic modeling of the loss curve is given by equation 4.8.
4.8
Quoss = aQ; + ng +c
To determine the coefficients a, b, ¢ at least three observatienseeded. The
method employed is the weighted least square estimation [53digated least square

formulation is given by equation 4.9.
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a
lbl:(XxWxX’)(XxWxY) 4.9
Cc

Where,
1 1 1 we 0 0
X = le ng Qg3 W = [ 0 WZ 0 ] Qlossl
031 Qéz 033 , 0 0 wi Y = |Qioss2
Qloss3

In order to geQ,ssena: Qg IN €quation 4.8 is to be replaced by total reactive
power available for the bus under consideration. Thig,js,;- the reactive power
generation at the instability limit. The weighing parameWt gives more weight to
recent observations. Formulation in 4.9 is for 3 sets of readings only.

Determination of reactive loss is one of the key steps in deteignthe voltage
stability margin. There are two steps in determination of{hg..q - the estimation of
coefficientsand thetotal reactive power allocatiorfor a given bus. These elements
determine the accuracy of the reactive loss, which eventudflyndi@es accuracy of the
final prediction.

Figures 4.7 and 4.8 show the reactive power loss curves estimatéteient
load levels for the IEEE 2 and 5 bus systems. The plot is drawrresitiive power loss
in the vertical axis and reactive power generation of theesyst the horizontal axis. It
shows how the loss curves vary with the obtained values of coefficeendifferent
loading stages. The legends, ‘coefficientsl’, ‘coefficients2’, atcrespond to the
coefficients estimated at the initial part of the curve wthie legend ‘exact’ is for the
exact curve. The observed accuracy of coefficient estimatiorjubtifses the use of the

method of weighted least square curve fitting.
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Figure 4.7 Variations of loss curves due to estimation error for 2 bus system
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4.3.4 Issues

The issues involved in estimation of power margin are the detdramnaf
Q10ssena @nd the estimation of reactive power allocation for a bus whichadlscts the
Q1ossena Prediction. The reactive allocation problem is difficult for lasystems with

multiple VCAs. The procedure for large systems is explained in the followatigse.

4.3.4.1 Application of the Method on Large Systems

For large systems, the coupling between buses varies. This ig&ds groups of
coherent buses with varying sets of generators as a sourcetofer@aever. Such groups
are referred as VCAs [30]. It means that a bus cannot geiaitsive power supply from
every generator in the system (the reason why voltage probleatied a local problem).
The equation 4.5 will not hold if we are to defidg;,; as the sum of the reactive power
capacity of all the generators. In order to determine whichcpkat generators supply
reactive power to which particular buses and in what amount (foragere supplying
multiple buses), a feasible way of doing it is via the deteroimaf VCAs. The set of
generators exhausted at the minima of the QV curve of & Imishe reactive reserve
basin (RRB) for that particular bus and the set of buses wittmconreactive reserve
basin comprise the VCA [30].

Considering the above definition, generators get associated witiplenMCAs.

It is again inaccurate to consider the entire capacity ctiveareserve basins as the total
reactive power supply for a VCA. For the scenario where theifoadanging in all the
buses of the system; it becomes very naive to not acknowledgacthedt the reactive
reserve basin for a given VCA would have a smaller capac#igctive reserve basin for

a VCA would depend on participation of generators in that VCAnddf here as
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participation factors (PFs). A simple way to define the mtestip is to consider

proportionality. The error associated with this is that load seitis$ could be different

i.e. every VCA may not have same sensitivity towards the gieneta be generalized as

a proportional relationship.

4.3.4.2 Algorithm to Determine VCA [36] and Participation Factors

There are various methods for determining VCAs [36], [37], [54]. For

convenience and accuracy, the VCA is determined using QV curve[8Bwing are

the steps for VCA and participation factor determination.

Draw QV curve for each load bus.

Determine the minima of the QV curve.

The generators that exhaust for the minima are the parttsipathe RRB

for that particular bus.

Once generators have been determined for all the buses and hilses w
common reactive reserve basins sorted out; all the VCAs are determined.
For a generator participating in ‘n’ VCAs, the participatioctda of that
generator in the RRB has been defined as follows:

Participation Factomp(f.) of the generator in VCA ‘J'=

Q; 4.10
?:1 Qi

Hence the total reactive capacity of a VCA for generator reactive
reserve basin is:
m
Zp-f}' X Qmaxj 4.11
=1

J
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Where,

Q; : total reactive power of a VCA

Q;: total reactive power of individual VCAs

Qmaxj: Maximum Reactive power capacity of a generator

p. fj: participation factor of the generators

4.3.4.3 Applying Voltage Control Area

To know the amount of increment of load possible in a given bus farltgpla
VCA system; the information from VCA is critical. Given th€X we can simply take
the reactive reserve basin as the total reactive sourcesdiodnp prediction in that VCA.
In effect the system has been reduced to a unit of closely cowysleainswith respect to
reactive power exchange. The result is conservative because thadarsconsideration
could be sensitive to other generators which are not a part of the reactive besanve

For a system with multiple load increase the participatiotofadoecome very
useful. The generators are a part of more than one VCA with ehtfesensitivities.
Consequently, the exact amount of reactive power absorbed byl dlsacannot be
guantified. The approximation is done by proportionality as in equation@rick this is
done, the problem reduces to single VCA multiple load change. With this redstépa

in section 4.3.2 and 4.3.3 can be undertaken for final margin estimation for the given bus.

4.4 Online Implementation of the Method

Schlueter [36] has indicated that VCAs are fixed. They do natgehaven when severe

contingencies and operating changes occur. It is however apparedinghautages

should change the VCA. The idea was tested on the IEEE 30 lamdyg calculating
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VCA following a contingency. It was found that the VCAs did changf& respect to
most contingencies. However, buses 25, 26, 27, 29 and 30 were part of théGame
and the reactive reserve allocation to them did not change a lopldther bus 26 of
reactive power allocation with respect to contingencies is showfigure 4.9. The
reactive reserve allocation is almost constant throughout the pratesh implies that
VCAs are quite robust. The argument made by Schlueter [36] and Hireabtesult can
be explained as follows:

It is not entirely correct that VCAs do not change with contingsndiowever
reactive power transfer is a local problem and the contingemdlkinfluence only the
local buses. Consequently, for every contingency there is no needadivacurve for
all the buses. Only the buses closely affected by the centtygcan be considered. One
simple way would be to check the sensitivities of generatotivegpoower to the line that
was out. The reactive reserve basin then needs to be calculatedlyfathose buses
which lie in the VCAs associated with the generator. Thi$ avistically reduce the
number of buses for VCA determination and make the process compatibidine
implementation. Sensitivity based method [37] would further acdeléh® process.
Further investigation is needed to find out the exact computational agearkor the
IEEE 30 bus system result, the system is small; therefost of the contingencies affect
the reactive power flow. The buses mentioned (25, 26, 27, 29, 30) halar saactive
reserve capacity because these buses are relativelsicalgctisolated from rest of the
system. The variation of reactive power observed in Figure 4@ ithé contingencies
related to transformer outages and a few major lines, otherhes& €A essentially

remains the same.
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Figure 4.9 Reactive reserve allocations for bus 26 vs. contingencies

4.5 Results and Analysis

The method was applied to two bus system to understand the effessivene
Further, simulations were done on IEEE 5 and 9 bus systems to tiothex scenarios
mentioned. The IEEE 9 bus system is an example of a largensgstét has multiple
VCAs. Finally the result for the IEEE 30 and IEEE 118 bus system has baeenteck In

all cases, error was calculated using equation 4.12.

Prealmax - Ppredictmax

Error(%) = X 100

P, realmax 4.12

Simulation was done by customizing routines in Matpower packade Th&
power system data also corresponds to the data file availatile Matpower package.
The steps in simulations can be explained as follows. Given a busasit three
observations were taken by varying the load (single increase or muitpéases). Using
these values to estimate the coefficients of the quadm@tiationQ;,ss.nq Was predicted.

The reactive reserve for each bus was calculated from ofglimelations. Finally,

www.manharaa.com



48

maximum power for a given scenario was predicted using the dbawelation. For
every error plot the horizontal axis represents the loadingaserat a particular bus in
p.u. and the vertical axis represents the prediction error at thesgonding operating
condition for the same bus.

Figure 4.10 is the error plot for the two bus system using Théwmniivalent
method. Figure 4.11 is the error plot using the proposed method. Théngrediction
due to Thévenin equivalent method is -156% as opposed to maximum e8&%6f
given by the proposed method for the same system. The negativeesigtes, over

prediction of the maximum loading point.

Error vs. Loading

20+ -

A
o
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-60F 4

-80+ -

-100+ B

Error in prediction, %

-120+ f

-140} R

-160 i I I I I I I
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Loading, p.u.

Figure 4.10 Error for the two bus system using Thévenin Equivalent method
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Error vs. Loading

Error in prediction, %
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Figure 4.11 Error for the two bus system using the proposed method

The sources of error are the inaccuracie®9f,; andQ;yssena - Since this is a
small system (two buseg),:,;iS the maximum reactive capacity of generator. The error
seen is thus due to error in prediction of reactive power loss.nited error can be
attributed to the fact that we have very few measurement®ro with. Once we have
sufficient number of points, the prediction@f,..,qs becomes accurate. The IEEE 5 and
9 bus systems have multiple buses with multiple loads, hence ishardiexibility to
predict with single and multiple load changes. In both the casextheacies due to the
new method is very good (Table 4.2).

Figure 4.12 is the one line diagram of IEEE 30 bus system. & gaserators, 42
lines, a base load of 272.4 MW and 107.80 MVAR and a maximum loading of 490 MWs.
The VCAs have been outlined in Figure 4.12 and presented in Table ithl w
corresponding reactive reserve basins and participation factorste$hks are much

more accurate than predicted by Thévenin like methods. Bus 3deasdnosen for
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observation. Error plots can be seen in Figures 4.13 and 4.14. Nextesis & the

method for a larger system IEEE 118 bus system was used. Thet8G@branches, 54

generators with 29 VCAs and the base load observed was 4242 MW anVASS

with final loading of 6363 MWs. The prediction was done for bus 21 lameiror plots

can be observed in Figures 4.15 and 4.16 respectively for the two scenarios.

Table 4.1 VCAs and RRBs with PFs for IEEE 30 bus system

VCA ID Buses in VCA RRBs PFs
(Generators)
1 3,4,6,9,10,12,28 1,2,5,8,11,13 0.53,0.28,0.53,0.19,0.42,0.21
2 7 1,2,5,8,13 0.47,0.24,0.47,0.17,0.18
3 14,18,19,20,23,24 8,13 0.23,0.25
4 15,16 2,8,13 0.10,0.07,0.07
5 17,21,22 2,8,11,13 0.38,0.27,0.58,0.29
6 25,26,27,29,30 8 0.07
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Figure 4.12 IEEE 30 bus system
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Error vs. Loading
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Figure 4.13 Error for IEEE 30 bus system at bus 3, single bus load increase
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Figure 4.14 Error for IEEE 30 bus system at bus 3, multiple load increase
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Error vs. Loading
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Figure 4.15 Error for IEEE 118 bus system at bus 21, single bus load increase
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Figure 4.16 Error for IEEE 118 bus system at bus 21, multiple bus load increase
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Comparative results between the Thévenin method and the proposed method have
been tabulated in Table 4.2. It compares error between Thévenhbdnahd the
proposed method for different test systems and loading scenariospl®luftdicates
multiple load increase while single indicates single load as&re One of the main
observations to be made from the table is the error offset iThHBeenin equivalent
method. The error is not sensitive to closeness to instability.h®rother hand, the

proposed method causes the error to decrease towards instabilignding ¢ to a very

narrow range.

Table 4.2 Error comparison

Test Error Recorded (%)
System Thévenin Equivalent Proposed Method
Multiple Single Multiple Single
2 bus - -156.8 t0 -156.8 - 7to-2
5 bus -270 to -120 -55to -30 2310 -5 18to 1
9 bus -50 to -42 -30 to -15 27102 13to-1
30 bus -250 to -100 -60 to -20 25t0 2 30to-5
118 bus -300 to -150 -100 to -50 4to-1 281to -3
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4.6 Conclusion

The consideration of available reactive reserves in computatiomolbdge
stability margin has proven to be very accurate and reliablgpa@@u to the Thévenin
Equivalent method. The error rate as we approach the loadability fats
exponentially. The reactive limits of generation or contingensieeh as outage of a line
influence the reactive loss of a line; however the effect issrbenign as compared to
Thévenin equivalent. An index calculated from this method would therdfermore
reliable. The implementation of VCA determination in the onlicenario as explained
is feasible. Future work is recommended on techniques to quickisndegethe VCA.
The proposed method can be extended to online voltage security asgessme
considering a set of credible contingencies and by monitoringniadlest margin at any

given time.
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5 ATTRIBUTE SELECTION FOR ONLINE VOLTAGE
STABILITY MONITORING USING DECISION TREES

5.1 Overview

With available wide area measurement system [8], the powstemyis
overflowed with data. Given the accuracy and speed of measuremeetupehas been
envisaged to be useful in state estimation, feedback control systdaygive relaying
and security monitoring. The data so obtained is also identifibe gopotential source of
information for applications such as tracing of system behavior pnd post system
wide events, parameter updating for power system models and redttangular
instability and voltage instability. In this chapter, efficient mMatkyelopment for voltage
stability monitoring is discussed and a method proposed. These appBcate suitable
for online applications because the time consuming calculations areofflome and the
decision results are almost instantaneous.

The extraction of implicit, previously unknown, and potentially useful
information from data is known as data mining [56]. Although, modern psystem
has staggeringly high volume of data, the need for data mining afophs in power
systems can be traced quite far back. The first attemptppdy sstatistical pattern
recognition (PR) to power system security was done by Dy Liacco in theixsies [57].

The voltage stability monitoring problem is a classification probl®©ver the
years, commonly used classification algorithms for voltage dtabilionitoring are
artificial neural networks (ANN) [14, 15] and decision trees-IB]l The advantage of
DTs over ANN is that DTs produce easily understood structurakiggens [58]. In
other words DTs are transparent methods while ANNs are blacklhexusefulness as a

result becomes twofold: firstly, we get the classificatiosulteand secondly the system
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knowledge. For example, by knowing attribute for splitting in a datisree we can

monitor a region associated with that attribute for stability and controlidunsct

5.2 Motivation

There are numerous studies in implementation of DTs for powemsyatltage
stability monitoring [11-13]. Cutsem et al [11] developed a sysiematy to adapt DTs
for voltage security monitoring. The importance of candidate attsbhigs been
highlighted but the pre-selection of such attributes has been I|&ftirtan expertise.
Similarly, Nuqui et al [12], proposed a methodology on implementation of DTs for online
voltage security monitoring using phasor measurements. The autlopesera new
candidate location for an additional PMU so that the overallracguwof the system is
enhanced. This sums up to finding the best attribute for formation @f e problem is
solved by considering every other bus to be the candidate locataima and checking
the accuracy of prediction. If this problem was extended to morderuof candidate
locations then the computational time would rise exponentially. Appgrevel need to
look for systematic way to handle the issue. Another study bwal\at al [13] has
similarities on the problem formulation, but presents many vamstof use of
measurements for voltage stability monitoring. For example, anfjzatices, reactive
power flow in lines, current in lines, voltage drops in lines, squatausfvoltages, etc
have been used as attributes. The elements chosen are apprspratage stability has
relationship to such parameters. However, we should have a systeratitod to choose
the parameters rather than trying out combinations on hit andb&sat. The solution to
this is to select attributes beforehand following a systenm@tcedure. This chapter
deals with developing systematic procedure for attribute tsmbeen decision tree

application. One of the challenges in data mining applicationsalalslity (the size of
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the data). There are two ways to deal with this issue. One appi#o develop a more
scalable algorithm which is able to handle a large amount of Q#tar approach is to
engineer the data. Engineering means making the data more atobypaliminating
redundancy and insignificant portions using an intelligent technique. [56, 58]

The work in this chapter is focused on improving the data. Spabyfican
attribute selection method is proposed. To put things in perspectiveoltbevirig
example can be considered. A typical measurement vector of ggstem is voltage
and angle at all buses, real power generation, reactive power tganeraal power
demand and reactive power demand. With these assumptions, for a feystams with
2 generators the data vector will have 8 (voltage and anglexclatbais) +4 (real and
reactive power generation level at each generator) + 8gnealeactive demands at each
bus) = 20 elements. If the problem was to be extended to aystatswhere the system
size is in the order of thousands of buses, the dimensionality (tbth leh the data
vector) of the problem will be daunting. However, most of thea ddéments are
redundant. For example the voltage and angles can be derived fromfioowesing the
given generation and load demands. This observation reduces the datactinerg
from 20. Secondly, the generator voltages are not sensitive aaréhegntrolled, so they
would not be useful either. Finally only four elements remain in ttee dade number of
attributes can be further reduced by following appropriatenigoes. The previous DT
implementations assumed a limited measurement vector frortredinriMU locations.
However, in the future observability of the entire system can pectad. In addition it
might be necessary to identify PMU locations which can be ideatifly applying
attribute selection procedure. There are standard data mining techifagquattribute
selection. However, no single method of attribute selection idbdsé and sufficient.
Every method has its own bias. For reliable the outputs of diffaréependent methods

have to be considered. This exercise may not necessardy‘the global best’ set of
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attributes but it will definitely produce better attributes andengeneral rules. The focus
of this work is to see if attributes can be selected based on pgstem knowledge and
the accuracy maintained. The method applied is tangent veatsitiagy [16] of
attributes. The significance of this exercise can be listed as follows:

e Reduce the dimensionality of the problem. This saves a lot of offline
computation time and resources and also increases the speed of online
implementation.

e Using a power system approach to select attributes complethentsita
mining approaches and makes the results more robust and reliable.

e By limiting ourselves to as little attribute as possibleyiit be easy to
track them for stability information.

e The information will also be useful in planning. For example future

locations for PMUs can be identified.

5.3 Decision Tree

Decision tree is a data representation technique [58]. It cordisiedes and
branches. Nodes are the points in a tree where a test is doneatinilge; branches are
outcomes of the test that lead to another node. There are thre@kmaties: root node,
internal node, leaf node. Root node is the topmost node, internal nodesbateeen
nodes and the leaf node is the end node. The completion of adestded by the purity
of a node. If a node attains a certain predefined level of clasy ploen the node is
terminated. In order to classify an unknown sample, the attribute \@&lties sample are
tested against the decision tree. A path is traced from théoradeaf node that holds the
class prediction for that sample. The structure and working of igsicledree can be

explained using an example. The data, Table 5.1, is the weather nadiati@alhich is
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available in Waikato Environment for Knowledge Analysis (WEKA) ][5&nd
corresponding decision tree is shown in Figure 5.1. WEKA is open souachine
learning software that has been used for testing the datattfisutes on different

algorithms in this work.

Table 5.1 Weather data

Outlook Temperature  Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No

Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No

Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes

Overcast Hot High True Yes

Overcast Hot Normal False Yes
Rainy Mild High True No
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~Tree View

=sunny = overcast = rainy

= high = normal =TRLIE =FALSE

s manwa e

Figure 5.1 Decision tree generated by WEKA for the data given in Table 5.1

The objective of data in Table 5.1 is to decide whether a giversdaytable for
playing. Hence, ‘play’ is the class attribute that needs tadsiqgted. The values that the
attribute ‘play’ takes are the class values. In this proltheare are two classes to predict,
viz. ‘yes’ or ‘no’. All the elements of the first row are tagributes and the values they
take listed along the columns are called instances. Since wedisavete instances the
attributes are called nominal. If the attributes are continuetu®fsnumbers they are
called numeric attributes.

Figure 5.1 is the decision tree output obtained from WEKA. Aslgeptevious

definitions, ‘outlook’ is the root node; ‘humidity’ and ‘windy’ are theemtal nodes and
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the decision nodes are the leaf nodes which contain the classeseén that the leaf
nodes have single attribute values such as ‘yes’ or ‘no’. Dunedormation of decision
tree, an attribute for a node is decided based on its ability toerédaampurity of the
division that it produces on a dataset. The algorithm [58] used to build the decision tree |
Figure 5.1 measures the impurity reduction by calculatingopytrand expected

information which has been explained in the following section.
5.3.1 Decision Tree Building

The basic task in building a DT is to find an attribute to seetton a node and
branching to another node repeatedly. The process of finding an atfobatdest and
branching is called splitting. The objective of a split in & iseto reduce the impurity in
the dataset with respect to class in the next stage. [58]&hisbe accomplished by
information gain measure. The calculation is done in two stages.tit@ entropy of the
dataset is measured and using this value expected informatioms gaafculated. The

entropy of a dataset is given by expression 5.1.

c

Entropy(S) = Z —pilogz (p:) 5.1
i=1

Where,

c= number of classes

S= training data (instances)

p= proportion of S classified as i

In the second stage, expected information gain is calculateth vehiiven by expression

5.2.
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S
Gain(S,a) = Entropy(S) — z llTvllEntropy(S,,) 5.2

vevalues(a)

Where,

Sy ={s€S:a(s) =v}

v=value of the attribute.
Gain(S,a) is the expected information gain obtained from the knowledge lofitatta’.

For the dataset in Table 5, using equation 5.1,

c

Entropy(S) = Z —pilog,(p;)

i=1

=202 21002 — 004
T T 1209274 T 120922

Similarly for instances of the attribute ‘outlook’ the entropies are as fsilow

Entropy(Ssunny) = 0.97
Entropy(sovercast) = 0.00

Entropy(Sminy) = 0.97

Now the expected information gain is calculated using equation 5.2.

S
Gain(S, outlook) = Entropy(S) — ||Su||

vevalues(a)

Entropy(S,)

= 0.94 > 0.97 * 0 > 0.97
- . 14- . 14- 14- .

=0.94 - 0.69 = 0.23
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Similarly computation of expected information gain of other attributedsjiel

Gain(S,temp) = 0.03
Gain(S, humidity) = 0.15
Gain(S,windy) = 0.05

The expected information gain is the highest by choosing the adtribwiiook’
which is 0.23, so it is chosen as the root node as seen in Figure 5dttrithge outlook
has 3 instances; hence the three branches. The next step is to find the &dirithat next
node after branching. Consider the branch ‘sunny’. The dataset isamdimed to all the
instances which have ‘outlook’ to be ‘sunny’. The total number of inssandbe dataset
reduces to 5. Within these 5 data points, the attribute ‘outlook’ is msideyed. The
entropy and expected information gain is calculated for rest of the attributes.

Thus,

c

Entropy($) = ) ~pilog, ()
i=1
_ Zl 2 3l 3 — 097
T 750955095

For the attribute temperature entropy for its instances,

Entropy(Spoe) =0

Entropy(Smia) = 1

EntrOPY(Scool) =0
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The temperature information gain:

15,

Entro S

Gain(S,temp) = Entropy(S) — 2

vevalues(a)

= 0.97 2O 21 10—057
- . 5' 5' 5' - .

Similarly,

Gain(S, humidity) = 0.97
Gain(S,windy) = 0.02

Finally, the information gain is highest for the attribute, ‘hungidélong the
branch ‘sunny’. As a result it becomes the second node. By rep#sicglculations for

other branches and nodes the entire tree is induced.
5.3.2 Issues with the Tree

The kind of approach pursued in developing the above tree is the greedy. se
That is because the decision is based on what is best now aredrfatles are not being
considered. Genetic algorithms [43] help in searching for the global optiohsets

In Figure 5.1 the decision tree correctly classifies evesyance. Although this
seems to be a good solution for the training dataset, the dassdly not do well with
other datasets. This is a case of over fitting [58]. Ovendjtthakes the tree large and
complex (hence requires a lot of computation time) and will nobleeta generalize the
rules (the model will not produce good results for an independenge®stOver fitting

becomes a nuisance when the data is contaminated by noise and.oltketution to
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this problem is to prune a tree. Operations such as pre-pruning andypuosg@re done
to reduce the over fitting effects. To neutralize overfittiegtihg should be done using
holdout procedures for limited data or by using an independent tests setr as
applicable.

. The real world applications have large amounts of data to mddua hence
scalability becomes another prime issue. The strategy ishier éncrease resources for
computation or adapting algorithms with better scalability featifes another strategy
is to reduce the data. Data reduction can be accomplished bycaolaaression,
numerosity reduction and dimensionality reduction. The data comprasdioe process
of transformation of data to a reduced or “compressed’ representdtithre original
data. The numerosity reduction finds a smaller form of data repedem. These
methods are independent of the system under study.

The third form of data reduction is the dimensionality reduction. Thithe
process of eliminating the attributes that are not signifitantlecision tree modeling.
Generic mathematical means can be used to filter the adsilluit at the same time
system information can be also useful. In other words, for attrilméet®on in power
system, knowing the nature of the variables can be of significamdais thesis, the
filtering of attributes is done using data mining algorithmsva$f as knowledge from
power system studies. The study is focused on applicability of poyséem knowledge

for attribute selection.

5.4 Methods of Attribute Selection

There are a large number of attribute selection methods [56, FBKAWfor

example has 12 algorithms for the purpose. The outcome of the ladgerihay not

necessarily be the same. An attribute may be qualified aslgosdme method while
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some other method may give it a very small weight. In such ait@&seecessary to have
a combined evaluation of different methods so that in effect thedbiéise attribute
selection algorithm is nullified. For this reason we want tocseligributes using methods
that have different discriminating philosophy. In accordance withlite of thought the

following attribute selection methods were chosen from WEKA.

e Gain ratio attribute evaluation
e Relief attribute evaluation

e Wrapper subset evaluation using Naive Bayes learner

5.4.1 Gain Ratio Attribute Evaluation

The information gain of an attribute is given by equation 5.2. Thisaelhiases
towards higher number of branching. For example, if there wasx@ia attribute ‘id
code’ as shown in Table 5.2, this attribute would have the highest irtfformnggin and it
would be chosen as the root node [58]. With all its branches, all ttaaes would be
perfectly classified, even if all other attributes wemoigd. The final outcome would be
a tree without any system information. To avoid this situationpatés are selected

according to their information gain ratio. Information gain ratio is givendjoxaion 5.3.

information gain

Gainratio = - - - -
information considering daughter nodes

S
Entropy(S) - Zvevalues(a) %Entropy(sv) 5.3

Entropy (Sy1, Sy -+ Su3)
The denominator takes into account just the number and sizes of theedaught

nodes without taking into account the information of the class. With neww
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formulation, considering the data in Table 5.2, information gain folidimode’ attribute
is 0.94 while the information gain ratio=0.246. For the attribute ‘outlooikgrimation
gain=0.247 while the information gain ratio=0.156. Although the hypotheittdbute
‘id code’ is still preferred, the bias is greatly reduced. Tifermation gain ratio
technique ignores attributes having high amount of intrinsic infoomaiio compensate
for this, there is a practice of choosing an attribute suchhbkantormation gain of that

attribute is at least as great as the average information gain for aftrihates.

Table 5.2 Weather data with the ID code attribute

ID code  Outlook Temperature Humidity Windy Play

a Sunny Hot High False No
b Sunny Hot High True No
Cc Overcast Hot High False Yes
d Rainy Mild High False Yes
e Rainy Cool Normal False Yes
f Rainy Cool Normal True No

g Overcast Cool Normal True Yes
h Sunny Mild High False No

i Sunny Cool Normal False Yes
j Rainy Mild Normal False Yes
k Sunny Mild Normal True Yes

I Overcast Hot High True Yes
m Overcast Hot Normal False Yes
n Rainy Mild High True No
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5.4.2 Relief Attribute Evaluation

The relief algorithm evaluates the worth of an attributegpeatedly sampling an
instance and considering the value of the given attribute for thesteastance of the
same and different class (WEKA help). This is an instancedbbsarning approach;
specifically the k-nearest neighbor algorithm is tailored toutate the weight of an
attribute. One simple version of the mechanics of the algorithmbeaexplained as
follows [58].

Once the training instance is classified, the most simiamelar or the most
similar exemplar of each class (exemplar is a representastance of a class) is used as
the basis for updating. Let x be the training instance and y thmmar. For every
attribute ‘i’, the differencgx; — y;| is a measure of the contribution of that attribute to
the decision. Smaller difference means, the attribute contripasisvely where as for a
larger distance the attribute contributes negatively. Given theatisih, if the
classification is correct, the attributes with smaller déifece turn out to be important and
hence its weight is increased. On the other hand if the ata$®ih is incorrect, the
weight is decreased. The selection approach is different lmrethe information gain
ratio method as relief attribute evaluation deals with a portiodatd rather than the

whole data. The number of exemplars used can be more than one (k).
5.4.3 Wrapper Subset Evaluation Using Naive Bayes Learner
The previous algorithms rank the attributes by a greedy approded. T
combination of attributes is not considered. For a selection of tibates, the

combination of top ranked attributes may not necessarily give gieobtome. In order

to have a better selection of attributes in a collective sérsagproach is followed. The
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number of attributes to form a subset is decided and the model is induced usingng lear
algorithm on the subset. The resulting model is then evaluated. Dfft@ent subsets
have been tested, the subset with the best results gives tloé $istected attributes.
Exhaustively trying all the possible combinations can be computdyidnadensome,
hence search algorithm such as genetic algorithms are auggd the optimum subset.
Naive Bayes is chosen as the learning algorithm as ifffereht from the above two
methods. The method is based on probability theory and has the assumptibas of
attributes being class conditional independent. Hence dependenttestréoe filtered
out. The Naive Bayes algorithm works as follows:

e Consider a data sample having ‘n’ attributes and ‘m’ classe®nGn
unknown data sample, X, the class prediction is based on highest posterior
probability conditioned on X. The sample X is assigned to clagsa@d
only if

P(Ci|IX) > P(Ci|X) for1<j<m,j#i

e We need to maximize the posterior probability to get the claks.

posterior probability can be calculated using the Bayes theorem as

equation 5.4:

PX/C)

. 5.4
roo P

P(CGi|X) =

In equation 5.4, the denominator is constant for all classes, (&
can be easily calculated. For the té#(X /C;), to reduce the computations
the naive assumption here is that the attributes are class conditional

independent. ThuB(X/C;) can simply be calculated using equation 5.5:
n
Pex/cy = [Pendco 5.5
k=1

Now, P (x|C;) can be estimated from the training samples.
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5.5 Power System Point of View of the Attributes

The data mining techniques for attribute selection that have bpé&red in the
previous sections are pretty standard. The idea of this thed®oiso use power system
knowledge for the selection of attributes. The attributes aretselesing values in the
tangent vector. The method is based on the hypotheses that atebositive towards
system scenarios are the critical attributes for classifin. This is reasonable because, if
an attribute does not change it is most unlikely that it wittrchsinate system conditions.
For example, voltage of a voltage controlled bus is a bad attributédasily changes,
while voltage and angles of electrically distant buses (weak) droes the reactive and
real power source change and those values may be good for predicting ctessifica

The general procedure of sensitivity analysis is to defisgakility index and
study its variation with power system parameters such asgeoltangles, loads,
contingencies and others [16]. Modal analysis [5] is an examecbf type of measure.
A voltage stability index based on minimum eigenvalue of the lémd Jacobian is
defined. In the second step, sensitivities of different power flomeziés such as buses,
lines, generators to that eigenvalue (or a mode) is calculateé fiorim of participation
factor.

In a second method, the sensitivities of power system paramsatdras voltage,
angles are directly calculated with respect to power syktading. This sensitivity is
called parametric sensitivity. The information can be usedtédnlgy analysis because
voltage and angles tend to have high value of sensitivity when thesbosiaded with
them is in the course of collapse. This can be observed in P\adiggigure 2.2) where
the slope of the PV curve is higher towards the collapse pointeriergl, when the

sensitivity of a parameter towards power system loadinggh, ht implies that the
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parameter is associated with the weaker part of the netaadkrequires corrective
actions.

Parametric sensitivity is more suited for attribute selactThis is because the
value of the sensitivity suffices in ranking the attributeshout any additional
computation for stability index. The sensitivity information is oi#d from tangent
vector [16]. More details on tangent vector evaluation are given imoises.8. The
tangent vector elements are differential changes in bus voltagiesa( dé;) and
magnitudes dV;) with respect to differential change in loadintt). Hence the tangent
vector elements serve as the voltage and angle sensitivityegpect to loading. These

parameters are the attributes of the decision tree model.

5.6 Decision Tree Implementation in Voltage Stabily Monitoring

Figure 5.2 gives a general picture of the real time appicaif decision tree in
voltage stability monitoring. Once the credible contingencies, opgrabnditions and
scenarios are known, the next step is to generate a da&aTiees database is used to
build a decision tree model. The tree, on real time will givesth®ility information

when fed by a measurement vector.
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Obtain credible operating conditions and
scenarios.

A 4

[ Generate a database and use %

training and test sets.

A 4

[ Decision tree f
Power system measurements
Stable? (reduced by attribute
selection).
Yes
A
No
\ 4
[ Control actions J

Figure 5.2 Implementation of decision tree in voltage stability monitoring of power
system
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5.7 Data Generation

Ideally, the results would be of more significance if the data from direct field
measurements. It is highly possible that, the data obtained froolased environment
lack the exact representation of system state and may dsedbiwith respect to
assumption of load variations and scenarios. Engineering judgmeaséefsl in such a
case. The advantage of having simulated data is in getting avgriedy of data within a
very short span of time. Possibly, getting the real life dath a8 much variety would
require years of data collection.

Data is required to train and test the decision tree model. Ngagat is used to
make classification rules. Test set is used to check accofaitye model. Depending
upon the availability of data, there are various holdout proceduresoss \alidation,
leave one out and bootstrap to use for model validity [58]. In this stndgdependent
test set has been used.

In order to know the system conditions to vary in generating the dais,
essential to know the parameters that impact voltage instatlithe voltage stability
margin. Following parameters are seen to vary voltage stability margin [2]

e Load increasing scenario
e Generation dispatch
e Contingencies

The influence of above variations on voltage stability margin is demaded by
PV curves of Figures 5.3a and5.3 b. Figure 5.3a demonstrates thge vstgdility
margin variation with different scenarios (defined by conticgeEnand load increments).
Figure 5.3b has varying base points (defined by different loadagibns and generation

dispatch) but the same scenario, yet margins differ.
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Common Base Point

Figure 5.3a Change of voltage stability margin with respect to diffecenbsios

"iu?"l

[ w—

Various hase points F

Figure 5.3b Variation of voltage stability margin with variation of base points

While generating data load increase scenario is redigyedndomizing the base
loading and increasing the load in their corresponding proportion. Theagener

dispatch variation is performed by randomizing the generationliddl outages are
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considered as credible contingencies. While increasing the loadgetheration is
proportionally divided among the generators according to their base generationtse that
slack generator doesn’t have to bear the entire load increment, whelvise would be

unrealistic.

5.7.1 Voltage Stability Criteria

There is not a universal approach to voltage security classficdtl2].
Commonly followed approaches seek for minimum or maximum thresboldoftage
magnitude at different buses and possibly different specific vébundrises identified as
important ones. Further, an operating point is defined as ‘secured bgson the
available real power margin. Real power margin is simply antditireal power that can
be loaded to the system before collapse. This is defined in pereefttye peak load.
For example minimum voltage should be greater than 0.92 p.u. and margirtaigevol
collapse of 12.5 % for a stable case [12].

In this study, an operating condition is assumed to have threeficksms:
secure, alert and insecure. The percentage of margin considered tesths as follows:
if the system is within 10% then the system is considered iresefuthe margin is
between 10-20 % the system is said to be in alert stage mhilgin > 20% means a
secure state. The buffer zone of alert stage gives the opdnaerto decide on control
actions in case the system is to enter the insecure staterifdren is illustrated by
Figure 5.4.The secure state is a green light for the openagecure is the red light and
the alert state is the orange light. In order to find theoonécof an operating condition
for a given scenario, the test system is stressed accordiniglyhe end point. Once the
outcome is known, the data vector is stored in an .xlIs file. Thisvéatar consists of

voltages and angles of all the buses and the classificatioa:\sdcure, insecure or alert
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state. The next phase is to input the data in WEKA for furthdysigavhich will be

covered in the results and analysis section.

A
V
>20 % >10 %
margin, secure | and < 20% Nose
margin, alert
<10 %
margin,
insecure
P

Figure 5.4 Security criteria
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5.7.2 Test System

The test system used for data generation is IEEE 30 bus systene (igb). The
system data is available in Matpower package that runs ilaidJavhich are open source
codes. Sampling for random numbers is done using a normal distribution heing t
Matlab function ‘random’. To be specific with the experiment perfarimere: There are
6 random generator dispatches, 5 random loading conditions and 38 contingéeces.
base case loading is 272 MW and the peak loading is of 490 MW inaplpFsximately
50 MW as 10% of the peak load. This number could vary for contingent iomsdimost
likely a smaller value. For unsolvable cases obtaining the noseljgmomes an iterative
process. To reduce the computation, the loading was reduced by 35 Ithy/snf all
cases as a representation of the insecure state, 70 MW falethease and margins of
150 MW considered the secure state. Using the MWs instead ohfsgyeaandomizes
the portion of the PV curve from which the sampling is done within the percentage limit
If a constant percentage is taken as the margin then thangossibility that we sample
around the same section of the PV curve. For each scenario, 3 obssraatidaken to
represent the three classes. Thus we have approximately 6x5x3823 data points.
Out of which nearly 1000 points are taken as a test set anesthis used for training the
decision tree.

Figure 5.5 is the flow chart for data generation process. rA giathe data is

available in Appendix A.
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Read the random number files for
random dispatch and load.

v
Take generation dispatch i. <

v

Take load dispatch j.

A 4

'

Take contingency k.

A 4

\ 4

Run power flow.

Yes

Convergence?

Record if the state of the system is secure, alert
or insecure.

I

All contingencies?

All base loads?

No

All dispatch?

No

Figure 5.5 Data generation for decision tree modeling
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The correct size of the dataset is a very important agpd2T induction. DTs,
for a smaller dataset can be prone to instability resultinigeies with varying structure
and accuracy for slight perturbation [60]. The perturbation could teeifotm of change
in attribute values or in the number of instances. In order to testah#ity of DT in the
learning set, the data was divided into 10 folds. Only 9 folds w&entat a time to
induce a DT. The generated DT was tested against an independeet. ddtissis the 10
fold cross validation technique [58].The outcome is presented in Tabl€Hg Zccuracy
ranges from 95% to 98% while the size of the tree varies sigjlgtly as shown. The

results imply that size of the dataset considered is suffioletgrms of stability of DT

induction.
Table 5.3 Stability evaluation of DT for the generated dataset
Fold Removed Size of the Tree Accuracy (%)
(number of nodes)
1 170 96.0
2 178 96.8
3 178 96.8
4 178 96.9
5 185 97.6
6 178 96.8
7 175 96.8
8 182 95.0
9 175 97.6
10 180 97.8
none 177 97.6
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5.8 Tangent Vector Calculation

The method for tangent vector calculation is | explained in Ch&p{section
2.2.1.1). The tangent vector gives the sensitivity of the paramétarpant in the PV
curve where they are evaluated. Since we want to clasgffyem operating state as
secure, alert or insecure, the attributes should be such tlyaprbe@ict each of these
categories accurately. Hence sensitivities in the entgemeof the PV curve should be
evaluated. Here, the samples were taken within 10%, 10 to 20% and >20% PBY
curve from the end point. The tangent vector was calculated for esredible
contingency (here the line outages). Since the angle and voltagavaassiare not
comparable, they have been ranked separately and 50% of eadryc&agput in the
final set. For example to select 20 attributes, top 10 attributese cfrom angle
sensitivities and the rest from the voltage sensitivities.aB®e the tangent vector
elements are negative and sensitivity is considered to be basesbaitude, normalized
magnitude of sensitivities is taken for comparison [16]. Figures rid65a/ are the bar
plots of the actual values of the top three attributes from theesragdd voltages
respectively for different operating conditions for various contiogsn The
corresponding sensitivity values are tabulated in Tables 5.4 and pectresly. It is
seen (Figure 5.6- sensitivities for conditions 2, 3, 4) that sengi$iare different for
different operating conditions. This indicates the nonlinearity oP¥eurve. Even with
this non linearity the general trend of the sensitivity wa$ sbat the relative ranking of
the attributes remained the same irrespective of system iomiediThis is consistent with
the results obtained in [16] for the 39 bus system. The sensitiattigghter loads were
found to be smaller compared to the stressed conditions. The peakdtdwang higher

values) in Figures 5.7 and 5.8 are for the stressed conditions. The taeg®ent were
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evaluated for IEEE 118 bus system. The sensitivity trend was fourel soridar to the

one observed for IEEE 30 bus system.
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Figure 5.6 Part of angle sensitivities for buses 18, 19 and 20 (top three aniglbessi)ri
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Figure 5.7 Part of voltage sensitivities for buses 24, 19, 26 (top three voltage &ftribute
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Some Angle Sensitivities (in the order of Corresponding sensitivities
System top ranks, actual values) (normalized values)

Condition Al19 Al8 A20 Al19 A18 A20
1 0.3302 0.3267 0.3256 1 0.9894 0.9861
2 0.2497 0.2472 0.2464 1 0.9901 0.9867
3 0.3853 0.3806 0.3799 1 0.9879 0.986
4 0.3297 0.326 0.3252 1 0.9887 0.9864
5 0.2495 0.2469 0.2462 1 0.9896 0.9869
6 0.3852 0.3806 0.3797 1 0.9882 0.9858
7 0.3296 0.3259 0.3251 1 0.9888 0.9863
8 0.2494 0.2469 0.2462 1 0.9897 0.9868
9 0.4003 0.3944 0.3948 1 0.9852 0.9863
10 0.339 0.3345 0.3345 1 0.9866 0.9867
11 0.2537 0.2507 0.2505 1 0.9883 0.9872
12 0.3851 0.3815 0.3792 1 0.9907 0.9846
13 0.3295 0.3265 0.3247 1 0.9909 0.9853
14 0.2494 0.2472 0.2459 1 0.9911 0.9861
15 0.3851 0.381 0.3794 1 0.9895 0.9852
16 0.3296 0.3263 0.3249 1 0.9899 0.9857
17 0.2495 0.2471 0.2461 1 0.9905 0.9864
18 0.3941 0.391 0.3875 1 0.9921 0.9832
19 0.3356 0.3329 0.3303 1 0.992 0.9842
20 0.2525 0.2505 0.2488 1 0.992 0.9854
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Table 5.5 List of voltage sensitivities for plot of Figure 5.8

Some  Voltage Sensitivities (in the order of

Corresponding sensitivities

System top ranks, actual values) (normalized values)

Condition V24 V19 V26 V24 V19 V26
1 0.0761 0.0729 0.0715 1 0.9582 0.9389
2 0.0558 0.0535 0.0523 1 0.9587 0.9363
3 0.0924 0.0884 0.087 1 0.9565 0.9416
4 0.0772 0.0739 0.0726 1 0.9569 0.94
5 0.0565 0.0541 0.0529 1 0.9575 0.9375
6 0.0926 0.0886 0.0869 1 0.9577 0.9391
7 0.0773 0.074 0.0725 1 0.9579 0.9379
8 0.0565 0.0541 0.0528 1 0.9583 0.936
9 0.1087 0.1049 0.0996 1 0.9651 0.9157
10 0.0875 0.0843 0.0805 1 0.9635 0.9199
11 0.0612 0.0588 0.0566 1 0.9616 0.9247
12 0.0929 0.089 0.0874 1 0.9578 0.9408
13 0.0775 0.0743 0.0728 1 0.9581 0.9392
14 0.0566 0.0543 0.0531 1 0.9584 0.9368
15 0.0914 0.0878 0.0858 1 0.9605 0.9382
16 0.0765 0.0735 0.0717 1 0.9603 0.937
17 0.0561 0.0539 0.0524 1 0.9601 0.935
18 0.0962 0.0932 0.0896 1 0.9693 0.9314
19 0.0796 0.077 0.0742 1 0.9672 0.9317
20 0.0576 0.0556 0.0537 1 0.9646 0.9316

5.9 Results and Analysis

In this section, attributes selected from different methods haare dmmpiled and

analyzed. The entire space of attributes consists of real arto/egaower injections and

voltage and angles at all buses. Only voltage and angles areleredsifor further

processing. This is because voltages and angles are readlbblavérom the phasor

measurements. Interestingly, it was observed that using voltayargles gave better

results compared to real and reactive power injections. Furtlaramd reactive power
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injections are dependent on angles and voltages. Consequently thittéeisl@ance that
information is lost.

The data was inputted as .CSV (comma separated value) file t0OAWNery
minor data preprocessing such as discretization was done. This weligder
computational load in building the decision tree model. Table 5.6 gheegop 20
attributes selected by different methods. The gain ratio, ssliéttangent vector methods
rank the attributes. The columns corresponding to those methods giaakkd fist. The
rank for angles and voltages apply separately for the tangetur \adtribute selection.
The column corresponding to the subset evaluation is not a ranked ligtlphlabet ‘A’
stands for angle and ‘v’ stands for voltage. The numbers following teemesent the
bus number. Table 5.7 gives the accuracy obtained in the models boiltdffferent
attribute selection procedure and the time taken for each modetdén that prediction
accuracy from tangent vector selection procedure is highestgthe different filters.
The farthest column on the right is the accuracy of the model alhéme attributes are
selected. It has the highest accuracy, but not of appreciable incremeamallvale taken
to build the model is 30ms compared to other methods which only take 20m&méhe
factor can be very significant for periodic update of the modelseiomline paradigm for
large interconnections where the number of buses in the network tleiorder of
thousands.

The final selection of the 20 attributes was done based on theirrexces
(repetitions/votes) and the ranks they held (in case of con8icise the pool has more
than 20 attributes). The outcome is shown in Table 5.8. The first noisirthe pre-
selected attributes with more than one vote, the second column isdh@sponding
votes, the third column is the finally selected attributes andadimh column is the
accuracy obtained. The accuracy is the highest (98.14%) of alhsles considered until

now (Table 5.7). This has been accomplished by a much smaller attilmfites (20)
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versus considering all the attributes (53, the case that had the thagmsacy
previously). This outcome is likely because when attributes arefibeted, the
insignificant and redundant attribute, can gain importance deep down the teeeeJAst,
the tree tends to be less general and is likely to perform worse in an independatt tes
As a further test on the selected attributes of Table 5.8, diffexgbsets were
considered for accuracy. In Table 5.9 first row consists obatés with the highest
number of votes. There are three such attributes. Next row hass¥eoeach attributes.
The third row is the combination of the two. In the fourth row attrutgh two votes
were considered while the attributes in the fifth set are the thia¢ have been considered
unimportant by the selection methods. It is found that, the sevémutds in the third
row has as high accuracy as 97.8%. This accuracy is comparable to the one ola@ained fr
20 selected attributes. Thus there is a further reduction of thleskhaof significant
attributes. The voting system as seen from Table 5.9 has worketbwtie available
data. The accuracy from attributes that were considered unimp@rédoie 5.9, row 4) is
82.06 %. This accuracy is low although more number of attributebdw®as considered.
Thus, properly selected attributes improve the model accuracy thdrea large set of

unfiltered attributes.
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Table 5.6 Attributes selected by different methods

Method Gain Ratio Relief Wrapper (Naive Bayes) Tangent Vector

Rank
1 V17 A8 V1 V24
2 V15 A9 V11 V19
3 V20 All V15 V26
4 V16 A6 V18 V20
5 V19 A7 V19 V18
6 V14 A28 V24 V23
7 V18 A3 V26 Va1l
8 V24 A4 V28 V22
9 V25 Al V29 V25
10 V30 A2 Al V17
11 V22 V19 A2 Al19
12 V21 Al6 A7 Al8
13 V29 Al2 A8 A20
14 V23 V18 A9 A23
15 V10 V14 Al2 A21
16 V12 Al3 Al7 Al4
17 V26 Al7 A20 Al5
18 V27 V17 A22 A22
19 A8 Al4 - A24
20 A6 V24 - Al7
Table 5.7 Accuracy from different set of attributes
Attributes Gain Relief Wrapper Tangent All
Selection Ratio vector Attributes
method
Accuracy
(%),
J48 96.7 91.75 96.39 97.3 97.63
algorithm
used
Time to
build the 20 20 20 20 30
model
(ms)
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Table 5.8 Final attribute selection (top 20)

Attributes  Occurrences/votes in sets Selected  Accuracy (%)

obtained by selection Ones
algorithms (top 20)

V14 2 V14
V15 2 V15
V17 3 V17
V18 4 V18
V19 4 V19
V20 2 V20
V21 2 V21
V22 2 V22
V23 2 V23
V24 4 V24
V25 2 V25
V26 3 V26 98.14
V29 2 Al
Al 2 A2
A2 2 A9
A6 2 Al13
A7 2 Al6
A8 3 Al7
A9 2 A20
Al12 2 A22
Al4 2 -
Al7 3 -
A20 2 -
A22 2 -

Table 5.9Accuracies for different sub sets of attributes based on number of votes

Attributes Occurrences/Votes  Accuracy (%)
V18, V19, V24 4 90.6
V17,V26, A8, Al7 3 93.5
V18, V19, V24,V17,V26, A8, Al7 4/3 97.8
vV1v2\Vv3Vv4,V5V6,V7,V8,V9,V10,A5, A10, A27 0 82.06
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Finally, most of the attributes selected are associateith vbuses
14,17,18,19,20,21,22,23,24,25,26 which are load buses that are located distantly
(electrical distance) from the real and reactive power ssu(Eigure 4.15). This is
crucial information as weak buses need to be monitored to have antandexg of the
stability of the system. This weak area identification t@&nfurther investigated to
determine whether the data mining algorithms consistentlytsaté&ributes related to

weak buses.

5.8 Conclusion

A systematic procedure to select attributes for decisiea tnodeling has been
presented. The method considers data mining techniques as welleagjitieering point
of view of the power system for attribute selection. This openscagiph s for different
other voltage stability analysis techniques for attribute seteand research on finding
better techniques. Another observation is that, the attributes atesberith weak areas
have a significant role in classification. This implies thatistical and data mining

techniques have the potential for weak area identification in power system.
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6 Conclusion and Future Work

6.1 Conclusion

This thesis gives a synopsis of online voltage stability monitoringreGt
practices in online monitoring have been presented along with dreavbacks. The
current approach to the problem consists of application of onlineuneeasnts and
stored data. For the first method, use of Thévenin equivalent is prevete equivalent
is highly influenced by reactive reserves (generatorshgittieir limits. This is also the
case for other indices proposed in the literature. Among the datagmwmethods, DTs
are gaining popularity due to their speed, accuracy and systermation they provide.
In the power system literature, it was found that the work wasn@ in a systematic
study of attribute selection using power system techniques.

In Chapter 4, to mitigate the influence of generators hitting thits, the
method of reactive reserve allocation has been proposed. This method peovideh
better accuracy qualitatively as well as quantitatively mamad to the Thévenin
equivalent method.. The offline calculation involved is the determinationC#. The
reactive power is allocated to a VCA by calculation of participation facidre proposed
method was applied to 2 bus, 5 bus and the 9 bus systems to demonstidea.the
Simulations were done on 30 and 118 bus systems to test the effectigéties method
in large systems.

Chapter 5 presents improvement on decision trees method for onliagevolt
stability monitoring by attribute selection. The role of datming approach such as
decision tree is vital in using the available accurate measmtedata in the power
system. Also, it is very important to extract important datatwibutes so that the tree is

robust, reliable and easy to compute. Data mining itself offéosmation based (gain
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ratio), statistical (k-nearest neighbor), probabilistic (naiaged) and others for attribute
selection. There are analytical approaches in power systdnth wan characterize
attributes as well. Can these attributes be used for attriblgtetion for decision trees?
The hypothesis has been tested using the tangent vector informagitnboftes. The test
system used was IEEE 30 bus system. It was found for theassthat the accuracy of
the selected attributes on decision trees is very high. bAt#s with higher sensitivity
were found to be better indicators of voltage instability. Attribetecsion will be very

helpful when it comes to large systems with a huge volume of data.

6.2 Future Work

To improve the accuracy, reliability and speed of voltage stabmibnitoring
using reactive reserves more work needs to be done on error aralysigst and
accurate determination of VCA. This is possible by working on nsystems and
observing the error behavior. Further, work can be done in the areghviiques to
quickly determine the VCA. The proposed method can also be extendelint voltage
security assessment by considering a set of credible contiegesnd monitoring the
smallest margin at any given time.

Regarding selection of attributes for decision trees using psystem methods,
other methods such as margin sensitivity, modal analysis could beyetifgb see their
performance. Tangent vector method has shown potential (Chajpderthg purpose and
is recommended for application in more systems to testeligbility. Further, the
methods of selection have shown to give weak buses. This is théarean be further
investigated to determine whether the data mining algorithmsistenity select

attributes related to weak buses.
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It is also important that a framework in the control centeudhghat the final
information is based on both types of approaches of stability monit@nadytical and
data mining approaches. As analytical methods can be used to detatimninges, data
mining approaches can be used to update system parametersdioahaiytical study. In
this way both the methods complement one another and yield bettds.ré&uth a

framework is shown in Figure 6.1.

Help by Parameter Identification

A

Analytical Tools Data Mining Methods

A 4

Help Predict Better

Measurement Systems

A 4 A 4
Independent Prediction Independent Prediction

NI

Final Outcome

Figure 6.1 Decision tool Using Analytical and Data Mining Tools
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APPENDIX A. PARTIAL DATA

This is a partial list of data generated. There are 3459 mEints in the entire

dataset. ‘V’ indicates voltage and the number associated vgies the bus number. So,

V1 is the column of p.u. voltage magnitudes at bus 1 for the differamasos.

Similarly, ‘A’ stands for angles and the number attached is the bus number.

<
[ER

P R P R R R R RRRPRRRPRRRBRRRRERRRRRBRRRRRR

<
N

P R P R R R R RRRPRRRPRRRBRRRRERRRRRERRRRR R

V3
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

va
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.99
0.99
0.98
0.99
0.99
0.98
0.99
0.99
0.98
0.99
0.99
0.98
0.99
0.99
0.98
0.99
0.99
0.99
0.99

<
Ui

P R P R R R R RRRPRRRPRRRBRRRRERRRRRBRRRRRR

V6
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

V7
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98

<
(o]

V9
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

P R P R R R R RRRPRRRPRRRBRRRRERRRRRBRRRRRR
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A23 A24 A25 A26 A27 A28 A29 A30 Pmargin
-18.41 -18.15 -16.59 -16.82 -15.49 -12.6 -15.92 -15.92 insecure
-16.78 -16.49 -15.14 -15.28 -14.21 -12.08 -14.49 -14.48 secure
-17.57 -17.41 -15.94 -16.13 -14.92 -12.37 -15.28 -15.28 alert
-18.23 -18.17 -16.61 -16.84 -15.51 -12.61 -15.94 -15.93 insecure
-16.87 -16.48 -15.13 -15.28 -14.21 -12.07 -14.48 -14.48 secure

-17.68 -17.4 -15.93 -16.13 -14.91 -12.36 -15.27 -15.27 alert
-18.36 -18.16 -16.6 -16.83 -15.5 -12.6 -15.93 -15.92 insecure
-17.17 -16.5 -15.15 -15.29 -14.22 -12.08 -14.5 -14.49 secure
-18.09 -17.43 -15.96 -16.15 -14.94 -12.38 -15.3 -15.29 alert
-18.86 -18.19 -16.63 -16.86 -15.53 -12.62 -15.96 -15.95 insecure
-17.25 -16.51 -15.16 -15.3 -14.23 -12.09 -14.51 -14.5 secure

-18.2 -17.44 -15.98 -16.17 -14.95 -12.39 -15.31 -15.31 alert
-18.99 -18.22 -16.66 -16.89 -15.55 -12.64 -15.98 -15.98 insecure
-17.01 -16.35 -15.04 -15.18 -14.14 -12.06 -14.41 -14.41 secure
-17.89 -17.26 -15.83 -16.02 -14.84 -12.35 -15.19 -15.19 alert
-18.61 -18.01 -16.49 -16.72 -15.42 -12.59 -15.84 -15.84 insecure
-16.88 -16.56 -15.19 -15.34 -14.25 -12.08 -14.53 -14.52 secure

-17.76 -17.5 -16.01 -16.2 -14.97 -12.37 -15.33 -15.33 alert
-18.48 -18.28 -16.69 -16.92 -15.57 -12.61 -16 -15.99 insecure
-16.88 -16.56 -15.19 -15.34 -14.25 -12.08 -14.53 -14.52 secure
-17.76 -17.5 -16.01 -16.2 -14.97 -12.37 -15.33 -15.33 alert
-18.48 -18.28 -16.69 -16.92 -15.57 -12.61 -16 -15.99 insecure

-16.9 -16.58 -15.21 -15.35 -14.26 -12.08 -14.54 -14.54 secure
-17.77 -17.53 -16.03 -16.22 -14.99 -12.37 -15.35 -15.34  alert

-18.5 -18.31 -16.71 -16.94 -15.58 -12.61 -16.01 -16.01 insecure
-16.81 -16.42 -15.09 -15.23 -14.18 -12.07 -14.45 -14.45 secure
-17.65 -17.31 -15.87 -16.06 -14.87 -12.36 -15.23 -15.22  alert
-18.35 -18.05 -16.52 -16.75 -15.44 -12.6 -15.87 -15.87 insecure
-16.64 -16.4 -15.07 -15.22 -14.17 -12.07 -14.44 -14.44 secure
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